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Abstract. In this study, a combination of the Levenberg-Marquardt algorithm and the type-2 fuzzy method is used to 
solve an inverse heat transfer problem. Considering the essential role of the damping factor in the stability and efficiency 
of the Levenberg-Marquardt algorithm in solving ill-posed problems, a new method based on fuzzy logic theory is used 
to update the value of this parameter in the iteration of the solution. A cubic polynomial experimental function is 
estimated using classical, type-1, and type-2 fuzzy Levenberg-Marquardt methods for the boundary heat flux in a one-
dimensional heat transfer problem. The evaluation criteria chosen are convergence speed and robustness. The results 
show that the use of a new method increases the speed of convergence. The robustness of the estimates is improved by 
using this new method compared to the conventional Levenberg–Marquardt methods, which are also more accurate. 
  
Keywords: Inverse heat transfer; One-dimensional heat transfer; Ill-posed problems, Levenberg-Marquardt algorithm, 
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1. INTRODUCTION 
 

Estimation theory is a very common problem in engineering and science, and various methods have been presented 
over the years (Keighobadi et al. 2020), so that inverse heat transfer problems are no exception. For solving inverse heat 
transfer problems, generally, a cost function is considered that needs to be minimized. Often, this cost function is 
formulated as an ordinary least square norm. Given that mathematically, inverse heat transfer problems are categorized 
as ill-conditioned, certain stabilization methods need to be employed during the solution process. The Levenberg-
Marquardt (LM) method is one of the most powerful stabilization methods applied in the estimation process. This method 
was initially introduced by Levenberg, and later proven by Marquardt (Woodbury et al. 2023). Numerous research have 
been conducted in the field of inverse heat transfer, encompassing both parameter estimation and function estimation 
using this method (Lu et al. 2015; Duda 2016). The LM method can be considered as a composite method composed of 
the steepest-descent and Gauss-Newton methods. Depending on the value of the damping factor, this method will behave 
similarly to one of the above methods. Thus, it can be stated that the damping factor and its determination play a 
fundamental role in the accuracy, precision, and speed of the estimation process. Optimizaing the regularization parameter 
in inverse problems solution techniques is commonly investigated (Samadi et al. 2018; Samadi et al. 2021). However, 
despite the significant importance of the damping factor, there are few papers in the literature regarding adjusting its 
value. One of a few papers presented in this regard is the approach proposed by Cui et al. (Cui et al. 2017) for updating 
the damping factor proportional to the number of solution iterations. In their presented method, the damping factor is 
directly related to the dimensionless cost function in solving the inverse heat transfer problem. The accuracy, solution 
efficiency, convergence speed, and stability of the LM method are compared for the damping factor determined using 
four different methods. Chen et al. (Chen et al. 2003) introduced a new method for determining the damping factor. In 
this study, a neural network was trained using the LM method, and the damping factor values were determined using the 
variable decay rate method. According to the presented results, the use of the proposed method significantly increased 
the convergence speed compared to the classical method for determining the damping factor in the LM algorithm. The 
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solution time using Chen et al.’s method is less than half of the time required in the classical method. A comparison 
between two different strategies for determining the damping factor, namely, the additive and multiplicative strategies by 
Lampton, has also been presented (Lampton 1997). The results indicate that the use of the additive damping strategy has 
a greater impact on improving the speed and stability of ill-posed problems solutions. In addition to these considerations, 
other papers have been presented on the damping factor and its impact on problem-solving using the LM algorithm in 
various scientific fields (Kind et al. 2016; Koh and Cheong 2018; Ukrainczyk 2009). Alongside the LM method, which 
is considered a classical method for solving inverse problems, novel methods have been proposed in recent years for 
solving inverse and ill-posed problems. Decentralized Fuzzy Inference (DFI), a fuzzy logic-based approach is among 
these methods. Fuzzy logic theory, introduced by Zadeh, essentially involves utilizing expert knowledge for the control 
of various systems (Zadeh 1979). Due to the high robustness of the DFI method against noise in input data and its 
acceptable stability, its application in solving inverse and ill-posed problems, including inverse heat transfer, has yielded 
satisfactory results. Wang et al. (Wang et al. 2017) utilized the DFI method to estimate unknown boundary conditions in 
a two-dimensional inverse conduction problem. The comparison of results obtained from the DFI and the LM methods 
validates the credibility of the new approach. Furthermore, the results demonstrate the independence of this method from 
initial guesses and its insensitivity to the presence of noise in input data, both of which are considered important 
advantages for the DFI method. Chen et al. (Chen et al. 2016) used the Decentralized Fuzzy Inference (DFI) method to 
estimate the shape of the boundary surface where heat transfer between the fluid and solid occurs. Several numerical tests 
have been conducted to investigate the influence of the initial guess, the number of temperature measurement points, and 
the presence of noise in the measurement data on the solution results. The accuracy of the DFI method has been validated 
against the conjugate gradient method (CGM) and genetic algorithm (GA) methods. The results indicate higher solution 
efficiency of the DFI method compared to the other two methods. Additionally, according to their investigations, the DFI 
method shows less sensitivity to the initial guess and the presence of noise in the measurement data compared to both 
other methods. In (Lau et al. 2015), Lau et al. employed the DFI method to estimate the transient heat flux in a participating 
medium problem. In this study, the radiative heat flux entering the surface is estimated based on the measured temperature 
of that surface. According to the obtained results, despite noise in temperature measurements, the transient heat flux is 
accurately determined by the DFI method. Another important result of ref. (Lau et al. 2015) is the high accuracy of the 
estimation using the fuzzy method compared to other approaches such as GA and Simulated Annealing. Considering the 
significance of the damping factor in solution efficiency, Sajedi et al. (Sajedi et al. 2021) propose a new approach for 
determining the damping factor in the LM method using type-1 fuzzy logic for inverse heat transfer problems. Their study 
acknowledges the advantages of LM method and the positive features of fuzzy logic-based methods like DFI. Their results 
show that, despite the positive impact of the fuzzy method in significantly reducing the convergence speed and improving 
solution stability, robustness to noise does not change much. In other words, determining the damping factor using type-
1 fuzzy logic does not enhance the solution's robustness to measurement noise compared to classical LM. Therefore, to 
address this weakness, the use of type-2 fuzzy logic is suggested in the current paper. 
 
2. 1-D TRANSIENT MODEL 
 

For the 1-D transient heat conduction problem, as shown in Fig. 1, a specified heat flux is imposed at 0x =  and an 
adiabatic boundary condition is applied at x L= . The governing equations for this problem are as follows: 

 

 
 

Figure 1. (a) Problem's schematic, (b) Domain discretization (Sajedi et al. 2021) 
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where 𝜶𝜶 is the thermal diffusivity, T0 is the initial temperature, ( )q t  is the heat flux, and λ  represents the thermal 

conductivity. If the heat flux at 0x =  is specified, it leads to a direct heat conduction problem. Solving Eqs. (1) to (4) 
provides the temperature distribution at various points over time. To solve this problem numerically, an implicit finite 
difference method is applied, resulting in the following discrete equations (WOODBURY ET AL. 2023): 
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where 1, 2, , –1i I= … . To solve the inverse problem presented above, which essentially involves estimating the time-

varying heat flux, ( )q t , the LM method has been employed as an iterative-sequential method. In the heat flux estimation 
process, additional information related to the measured temperature by an embedded sensor at the location measx x=  and 
times 1,2, ,it K= … , is utilized using the LM method. In solving the current inverse problem, the unknown heat flux is 
assumed as follows: 
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where jP  are the unknown parameters, ( )jC t  are the known functional forms such as polynomials, spline, etc., and 

N  represents the number of components that are considered unknown. With the assumption made in Eq. (3), the problem 
of estimating the heat flux on the surface transforms into the estimation of the N  unknown parameters of the vector 

[ ]1,  , T
NP P= …P . The solution to the inverse heat transfer problem for estimating the unknown parameter vector is based 

on the minimization of the ordinary least squares norm, defined as follows: 
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where S  is the objective function to be minimized. ( ) ( ),i iT T t=P P  and ( )i iY Y t=  are estimated and measured 

temperatures at time it , respectively. Note that the estimated temperature, ( )iT P , is the temperature value at the 
measurement location, measx , and is obtained by solving the direct heat conduction problem for the estimated values of 
vector P , at time it . 

 
3. OBTAINING THE ITERATIVE SOLUTION PROCESS 

By taking the derivative of Eq. (9) with respect to each of the unknown parameters and setting these derivatives equal 
to zero, the minimization process is implemented. 
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The first term in Eq. (5a) is defined as: 
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The transpose of the matrix resulting from Eq. (5b) is defined as sensitivity matrix as: 
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By substituting Eqs. (11) and (12) in Eq. (10), it can be written as: 
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Using Taylor series expansion for T(P) results in: 
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The last term of Eq. (14) can be neglected in inverse heat conduction problems (Ozisik 2000). By substituting Eq. (14) 

in Eq. (13) and solving for 1k+P , the following equation results: 
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Given that Eq. (15) is an approximation of the Newton-Raphson method, the main condition for the existence of a 

solution and obtaining a suitable estimate using this method is the satisfaction of condition 0T ≠J J . On the other hand, 
even in cases where the value of this determinant is non-zero but small, this method will still be ineffective in estimating 
the desired parameter (Ozisik 2000). Inverse heat transfer problems, which are a subset of ill-posed problems, have a very 
small value for TJ J  (Ozisik 2000). Therefore, the direct use of Eq. (15) for estimating the unknown parameters in inverse 
heat transfer problems is not feasible. The use of the method proposed by LM and adding a corrective term to the equation 
obtained from the least squares estimation makes it possible to apply it in solving ill-posed inverse heat conduction 
problems (Ozisik 2000). Thus, the corrective method can be written as follows: 
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where ( )Tk k Tdiag=  
  

Ω J J  is a diagonal matrix. In Eq. (16), kµ  is the damping factor, a positive scalar. The purpose 

for adding this term to the equation is to dampen oscillations and instabilities arising from the ill-posed nature of the 
inverse heat transfer problem. In this paper, the stopping criterion for the iterative process of estimating parameter, jP , 
is shown below: 
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1k k ε+ − ≤P P  (17) 
 
where ( )1/2T=x X X‖ ‖ , and 510ε −=  is considered as convergence criterion. The LM method is a classical method 

that combines the steepest descent and Gauss-Newton methods. The larger the damping factor, the closer this method 
behaves to the steepest descent method. In this case, the length scale of the steepest descent method is inversely 
proportional to the damping factor of the LM method. Conversely, as the damping factor becomes smaller (approaching 
zero), the behavior is similar to the Gauss-Newton method. It is known that the steepest descent method is stable but slow, 
so the LM method also has a speed-limiting factor. Determining the correct value for the damping factor is the most 
crucial point in inverse heat conduction problem. Generally, in inverse problems if ( ) ( )1k kS S+ ≥P P  the damping factor 

is selected to be 10 times larger than that of the previous step, while if ( ) ( )1k kS S+ <P P  it is decided to be 10 times 
smaller than the previous step (Chen et al. 2016). Considering that the Levenberg-Marquardt method, especially in the 
vicinity of the initial guess and in the early stages of solving where it is further from its final solution, is in a more ill-
posed condition and closer to the steepest descent method, a larger damping factor accelerates the convergence of the 
solution. In other words, at the beginning of the solution, using a larger damping factor ( 10µ = ) shortens the time 
required to reach a suitable estimate for the values of jP . Moreover, as the solution progresses and the ill-posedness of 
the inverse heat transfer problem decreases, reducing the damping factor can shorten the convergence time. The algorithm 
for solving the problem using the classical Levenberg-Marquardt method is presented in Fig. 2. 

 

 
 

Figure 2. Classical levenberg-marquardt solution algorithm (Sajedi et al. 2021) 
 

Considering the results presented in (Chen et al. 2003; Madsen et al. 2004; Kwak et al. 2011; Torabi and Hosseini 
2018), using a fixed length scale in the steepest descent method has an undesirable impact on its convergence speed. Some 
references (Chen et al. 2003; Madsen et al. 2004; Kwak et al. 2011; Torabi and Hosseini 2018) have introduced the idea 
of considering a variable damping factor. Chen et al. (Chen et al. 2003) also investigated the influence of using a variable 
length scale on improving the speed of the classical LM method. The main idea of their approach is to reduce the size of 
the length scale coefficient in the vicinity of the initial guess and initial steps of the solution. Subsequently, increasing 
this scale in steps closer to the final solution has led to an acceleration in convergence speed. Therefore, in the present 
work, using the same approach, the damping factor in the LM method is considered variable with a fuzzy logic-based 
method, taking into account the percentage error value as a variable step. In this way, a larger damping factor for LM 
method is considered when the calculated percentage error is higher, and as the solution approaches the final answer, a 
smaller damping factor is adopted. 

 
4. TYPE-1 FUZZY LOGIC 
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Fuzzy logic is widely used in dynamic systems. The term "fuzzy" or ambiguous refers to the fact that the logic 

governing the system can deal with concepts that cannot be expressed as "true" or "false" but rather as "true to some 
extent". Although other approaches such as genetic algorithms and neural networks can function in many cases similar to 
fuzzy logic, the unique strength of fuzzy logic lies in presenting and implementing problem solutions in a way 
comprehensible to human operators. This allows utilizing their experience for design without having a precise 
mathematical model for the system. Such adaptability makes automating tasks previously successfully performed by 
humans easier (Buckley and Eslami 2002). The general structure of the type-1 fuzzy system is illustrated in Fig. 3. 

 

 
 

Figure 3. Schematic type-1 fuzzy logic system 
 

As depicted in Fig. 3, in the fuzzification stage, numerical input values are initially transformed into linguistic fuzzy 
values through the assignment of membership functions to each input and output. The fuzzy rule stage establishes 
relationships between input and output values through a set of if-then fuzzy rules. Subsequently, the fuzzy inference 
engine evaluates these fuzzy rules to generate an output based on the input values. In the defuzzification stage, the 
linguistic fuzzy output is then converted into a numerical output value (Buckley and Eslami 2002). Moreover, the 
percentage error parameter serves as the input, and the value of the damping factor used in the LM method acts as the 
output in the fuzzy method. The percentage error parameter is calculated as 
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The rules used in the fuzzy method are considered as follows (Sajedi et al. 2021) 

1. If Percent Error is NLR then µ  is VS 
2. If Percent Error is NL then µ  is S 
3. If Percent Error is NM then µ  is SS 
4. If Percent Error is NS then µ  is LM 
5. If Percent Error is Z then µ  is M 
6. If Percent Error is PS then µ  is UM 
7. If Percent Error is PM then µ  is SL 
8. If Percent Error is PL then µ  is L 
9. If Percent Error is PLR then µ  is VL 

where NLR stands for negative larger, NL for negative large, NM for negative medium, NS for negative small, Z for 
zero, PS for positive small, PM for positive medium, PL for positive large, and PLR for positive larger. Additionally, VS 
denotes very small, S small, SS slightly small, LM lesser medium, M medium, UM more medium, SL slightly large, L 
large, and VL very large. The problem-solving algorithm using type-1 fuzzy LM method is fully presented in Fig. 4. The 
membership functions for input and output in the type-1 fuzzy process are illustrated in Figs. 5 and 6, respectively. The 
fuzzy system components include Mamdani inference engine, singleton fuzzifier, and center average defuzzifier (Buckley 
and Eslami 2002): 
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where kµ ⊂   is the damping parameter in step k , nx ⊂  , l  is the number of rules. In Eq. (12), n  represents the 

number of inputs, ly  the center of the fuzzy system output membership function corresponding to the thl  rule , and 
iAµ  

the membership function corresponding to the thl  rule correspond to the thi  input, respectively. 
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Figure 4. Flowchart of the type-1 fuzzy approach in lm algorithm 
 

 

 
 

Figure 5. Input parameter’s membership function (percent error) for type-1 fuzzy method 
 

 
 

Figure 6. Output parameter’s membership function (damping factor) for type-1 fuzzy method 
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5. TYPE-2 FUZZY LOGIC 

 
Fuzzy logic Type-2 was earnestly introduced and applied after the publication of a comprehensive book on the subject 

of intersection, union, and complementation of Type-2 fuzzy systems, as well as the presentation of a comprehensive 
algorithm for output calculation and defuzzification (Buckley and Eslami 2002). Subsequently, comprehensive 
information for the computation of Type-2 fuzzy systems, including reduction order relationships, defuzzification, and 
Type-2 fuzzy sets, was provided (Buckley and Eslami 2002; Mendel et al. 2006; Mendel and Liu 2013). Various models 
of Type-2 fuzzy systems have been proposed, all sharing the commonality of Type-1 fuzzy membership degree. 
Essentially, Type-2 fuzzy systems serve as a method to enhance the ability to deal with imprecise information in a sound 
and logical manner. Therefore, in this paper, as mentioned before, Type-2 fuzzy systems have also been utilized 
considering having noisy data. In Fig. 7, the structure of a Type-2 fuzzy system, along with the various steps of its 
execution and the sequence of performing them, is illustrated. By comparing Figs. 3 and 7, it is evident that there is a 
significant resemblance between Type-1 and Type-2 fuzzy systems in terms of their execution steps, and to some extent, 
their governing logic is similar. However, in the Type-2 fuzzy system, an extra step involving order reduction needs to 
be carried out, in addition to the Type-1 fuzzy system. For a more in-depth exploration of Type-2 fuzzy systems, please 
see Refs. (Mendel et al. 2006; Mendel and Liu 2013). Figure 8 depicts the flowchart illustrating the LM method with 
Type-2 fuzzy. The membership functions for input and output in the type-2 fuzzy process are illustrated in Figs. 9 and 
10, respectively. 

 

 
 

Figure 7. Schematic type-2 fuzzy logic system 
 

 
 

Figure 8. Flowchart of the type-2 fuzzy approach in lm algorithm 
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Figure 9. Input parameter's membership function (percent error) for type-2 fuzzy method 
 

 
 

Figure 10. Output parameter's membership function (damping factor) for type-2 fuzzy method 
 

6. RESULTS AND DISCUSSIONS 
 

This paper addresses the solution to the 1-D transient inverse heat conduction problem using the LM method. Three 
different approaches have been employed to determine the damping factor. In the course of solving this problem, the 
values for damping factor have been initially determined using the classical LM method. Subsequently, the coefficient 
has been reevaluated twice, leveraging both the expert knowledge and its incorporation into the Type-1 and Type-2 fuzzy 
logic methods. The one-dimensional transient inverse heat conduction problem is discussed through numerical 
experiments outlined in Section 2. Each simulation involves ( )40 /W mKλ = , 64 10pcρ = × , 0.025L m= , T0=20°C, 

0.03t s∆ = , –31.3 10x∆ = × , and 500K =  time steps. Additionally, the sensor location is assumed to be
–311.7 10masux m= × . A third-order polynomial in the form of ( ) 3 310q t t=  has been employed as a trial function for the 

heat flux imposed on the left surface. The parameters considered for evaluating the performance of the three algorithms 
are the estimation speed and the robustness of the solution . Note that no experimental measurement or data collection has 
taken place in this article. The temperatures, ( )iY t , have been obtained through the numerical solution of the transient 
one-dimensional heat conduction problem. Figures 11 to 14 showcase the historical plots of the noisy temperature and 
the estimated surface heat flux obtained from fuzzy methods and the classical method. The mean value is set to zero, and 
the standard deviation is unity within the [ 2.576 2.576]−  interval, aiming for a 99% confidence coefficient. In all cases, 
the noise value adheres to the following equation, where η is a random number between –1 and 1. 

 
( )1 / 2.576noisy exactY Y ζη= × +  (20) 

 
where ζ is a constant value coefficient, which determines the intensity of the noise. Comparing the convergence rates 

for estimating the parameters jP  indicates that the time needed to estimate the four required parameters for damping 
factor using type-2 fuzzy method takes 38 times less than the classical LM method. However, there is no significant 
difference between the use of type-2 and type-1 fuzzy algorithms. 
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Figure 11. Temperature obtained through numerical solution for a 1-D transient heat conduction problem assuming a cubic 
polynomial for heat flux 

 

 
 

Figure 12. Surface heat flux estimation using the classical and fuzzy logic lm methods, ζ  0.01=  
 

 
 

Figure 13. Surface heat flux estimation using the classical and fuzzy logic lm methods,   0.05ζ =  
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Figure 14. Surface heat flux estimation using the classical and fuzzy logic lm methods, ζ  0.1=  
 

The robustness of the utilized method against measurement noise is investigated in this section. Accordingly, based 
on Eq. (20), noisy data have been generated by solving the transient one-dimensional heat conduction equation and adding 
three different levels of noise to it. As illustrated in Fig. 11, to generate this noisy data, values of   0.01, 0.05, 0.1ζ =  were 
applied in Eq. (20). Also, the initial guess of 0.001 has been assumed for data generation. The increase in noise is clearly 
discernible with the increase in 𝜁𝜁 values. For instance, the temperature sensor data are noise-free in the case of   0ζ = , 
while they are heavily affected by noise in the case of   0.1ζ = . Figure 12 depicts the estimated surface heat flux using 
type-1 and type-2 fuzzy methods and the classical method for a cubic polynomial function under the influence of noise 
with 0.01ζ = . Figures 13 and 14 also present the estimated surface heat flux for 0.05ζ =  and 0.1ζ = . These plots 
demonstrate the robustness of the solution to the presence of noise in temperature sensor data. According to the presented 
results, even though the use of fuzzy methods leads to relative improvement and better alignment of estimates with 
accurate values, the significant impact arising from the use of type-1 or type-2 fuzzy methods is not apparent, as the 
classical LM method provides accurate estimates. The type-2 fuzzy method outperforms the type-1 fuzzy method in 
estimating heat flux with superior precision. Particularly, under the highest noise intensity, as shown in Fig. 14, the type-
2 fuzzy method excels in providing accurate estimates, while the other methods struggle to estimate surface heat flux 
accurately. In other words, the fuzzy approach enhances the LM method's robustness to sensor noise, resulting in more 
accurate estimates. To quantify the presented observations and conduct a more detailed examination and comparison of 
the results in the plots, Table 1 provides the root mean square error (ERMS) for various noise intensities. According to 
this table, the most significant positive impact of using the type-2 fuzzy method occurs at   0.1ζ = . This results in a 
reduction of errors by more than 50%. While the impact of using type-1 and type-2 fuzzy methods varies across the three 
scenarios, overall, employing the LM method with damping factor values determined using type-2 fuzzy rules 
demonstrates greater resistance to noise and, simultaneously, faster performance compared to the classical and type-1 
fuzzy methods. 

 
Table 1. Root mean square error in heat flux estimation 

 

Method 
Error in estimation for different noise levels 

 0ζ =   0.01ζ =   0.05ζ =  0.1ζ =  
Classical LM 7.2×10–7 1773 4864 20029 
Type-1 FL LM 6.6×10–7 1792 3459 16466 
Type-2 FL LM 2.6×10–8 1636 2096 9658 

 
7. CONCLUSION 

 
In this study, three methods are employed to determine the damping factor in the Levenberg-Marquardt method used 

in solving inverse heat transfer problems. The classical method proposed by Marquardt, and a new method based on type-
1 and type-2 fuzzy logic theories, whose principles are explained in the paper. With the aim of reducing estimation time 
in the LM method, the newly introduced method updates the damping factor at each iteration. To assess the effectiveness 
of the new method, surface heat flux in a one-dimensional heat transfer problem is estimated using a third-degree 
polynomial test function with three methods: classical LM, type-1 fuzzy, and type-2 fuzzy. In addition to the convergence 
speed, the robustness of heat flux estimation against noisy data is investigated. According to the results, the robustness of 
the solution to noisy data using the type-2 fuzzy method has increased compared to the other two methods, and the 
estimation speed of this method is higher than classical LM and on par with type-1 fuzzy. Therefore, it can be concluded 



R. Sajedi, J. Faraji, F. Samadi and F. Kowsary  
Adaptive Determination Of Damping Coefficient Of Levenberg-Marquardt Algorithm Using Type-2 Fuzzy In Inverse Problems  

that the use of the new method based on type-2 fuzzy logic for determining the damping factor in the LM method improves 
its performance, with very accurate and reliable results. 
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