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Abstract. Various researchers have demonstrated that Bragg-scattering can be suitably exploited to engineer periodic
structures which show bandgaps, i.e., frequency ranges in which wave propagation is not allowed. This strategy is unsuitable
for controlling wave propagation for some low-frequency applications, since large unit cells become required. Alternatively,
locally resonant periodic structures can be designed to possess bandgaps in any frequency range. Nevertheless, these
structures may not be adequate for some practical applications, due to the need for heavy resonators with low static
stiffness, compromising desirable structural features, such as lightweight. Inertial amplification mechanisms (IAMs) have
been employed as promising alternatives to the aforementioned techniques because they naturally exhibit forbidden zones
in lower and broader frequency ranges. Hence, one studies the dynamic behavior of a periodic structure whose unit
cell possesses IAM coupled to local resonators with negative stiffness absorbers. The aim is to investigate if Bragg-
scattering and local resonance can be exploited to improve forbidden zones. The Wave-based Finite Element Method is
used to compute free and forced responses. Predictions based on the Bloch-Floquet theorem were validated through the
transmissibility response of a finite metastructure, which further confirmed the remarkable wave attenuation performance
of the considered system and the bandgap merging.

Keywords: metamaterial, inertial amplification mechanism, negative stiffness absorber, periodic structures, wave-based
finite element method

1. INTRODUCTION

Acoustic and elastic metamaterials are specially engineered materials and devices which exhibit properties not naturally
found in nature or conventional systems. As pointed out by Hussein et al. (2014), the prefix “meta”, in this context, comes
from the Greek language and indicates the notation of “after” or “beyond”. Under these circumstances, metamaterials can
be designed aiming to exploit the waveguiding appearance (Pal and Ruzzene, 2017), sub-middle-high-wavelength bandgap
formation (Wang et al., 2019; Mizukami et al., 2021), confinement and mode localization phenomena (Sheng et al., 2003;
Wu et al., 2009), invisibility cloaks (Ning et al., 2020), and some negative equivalent properties such as refractive index,
elastic modulus, and Poisson’s ratio (Gao et al., 2022).

Probably, in the field of vibration attenuation, the bandgaps are the most studied phenomena exhibited by metamaterials
to prohibit wave propagation in some frequency ranges. Such forbidden zones can be realized by means of Bragg-scattering
(Nobrega et al., 2016), local resonance (Deng et al., 2022) and inertial amplification mechanisms (IAMs) (Yuksel and
Yilmaz, 2015). If one wants to couple a metamaterial with a conventional engineering system or even design a structure
that behaves as a metamaterial on its own, referred to as a metastructure, each of the previously mentioned bandgap
generation mechanisms can be utilized for specific engineering applications. For example, Bragg-scattering phenomenon
can be useful to control wave propagation characteristics in higher frequency ranges, since not-so-large unit cells are
required for this application (Krushynska et al., 2017); spatially arranged local resonators are suitable to tune the bandgap
width and location more easily (Wang et al., 2019); and IAMs were recently exploited to control elastic waves propagation
in lower frequency ranges without harm structural worthiness (Mizukami et al., 2021). Of course some works have already
investigated the dynamic behavior of a resulting system, by relying on coupled bandgaps generation mechanisms.

Jin et al. (2022), for example, proposed a layered honeycomb metastructure with an ultra-wide coupled bandgap ensuing
from Bragg-scattering and local resonance. In a few words, the metamaterial presented by the authors was built from a
local resonant phononic crystal, in which a heavy block was seated to a rubber one, coupled to a material fabricated by
casting liquid two-phase silicone rubber. It was argued that bandgaps resulting from spatially arranged local resonators
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are usually narrow when a factual engineering design is used, i.e., using a resonator with low mass. Thus, it is very
challenging to achieve a wide forbidden zone based on local resonance in the low-frequency range, which is necessary
for several engineering applications, such as those involved with noise, vibration, and harshness (NVH), because the
bandgap width will be naturally small. This, for instance, harms the effectiveness of attenuation zones ensuing from local
resonance for practical problems. In addition, Jin et al. (2022) pointed out that Bragg-bandgaps width and position can be
controlled mainly by the length of the unit cell along the direction of wave propagation; however, they are usually located
in higher frequency bands for not-so-large lattice constant, which may not be useful for some vibroacoustic applications.
These limitations of Bragg-scattering and local resonance phenomena to generate bandgaps can be reasonably overcome
by exploiting their individual potentialities (Jin et al., 2022).

Also, in the context of metamaterials, negative stiffness absorbers (NSAs), also called negative stiffness devices
(NSDs), have been extensively studied as novel mechanisms for controlling vibration levels in structural systems such as
bridges and long cables (Zhou et al., 2020). However, while much research has been dedicated to theoretical aspects,
practical realizations of such devices are rare due to their hard conceptualization and implementation. Despite that, in
a recent-related study, a NSD with adjustable negative stiffness based on a pre-compressed spring and a lever beam was
proposed (Chen et al., 2023). Authors experimentally tested the NSD to improve cable damping and demonstrated the
feasibility of their theoretical findings. The NSD was investigated in parallel and series with commonly used damping
elements, such as viscoelastic and high-damping rubber. Additionally, Chen et al. (2023) introduced several formulae that
are useful for the optimal design of these mechanical vibration absorbers with negative stiffness.

Xiao et al. (2023) investigated locally resonant metamaterials (LRMs) with negative stiffness combined rotationally
and transversely to a traditional beam-type host structure. Initially, a monatomic local resonator was utilized, along with
a damping device, resulting in the resonator being referred by Xiao et al. (2023) to as NSA due to its energy absorption
properties. The authors showed that rotational coupling-like applications between the host beam and the resonator can
be used to move the stop band lower bound to smaller frequencies, just by increasing the resonator’s damping properties.
On the other hand, Xiao et al. (2023) argued that transversal coupling-like schemes can be employed to generate wider
forbidden zones in higher frequency ranges than those generated with the rotational coupling strategy, by varying the
same damping parameters used in the rotational coupling. Of course, these findings indicate that the rotational coupling
scheme between a host beam and the NSA performs better in lower frequencies compared to the transversal configuration.
Furthermore, various parametric studies were conducted regarding a host beam rotationally coupled to the NSAs, which
clearly demonstrated the influences of negative stiffness, outrigger length, and damping ratio in the effectiveness of the
metamaterial, concerning wave attenuation performance. The phenomenon of bandgap merging was also studied by Xiao
et al. (2023), and it was shown that damped diatomic systems with NSAs can be used to enlarge the bandgap width,
compared with the case without negative stiffness elements. This latter realization proves that NSAs can be used as a
means of enhancing wave attenuation properties of a beam-type metastructure.

Wang et al. (2019) proposed and experimentally tested a metamaterial rod with resonators containing negative-stiffness
mechanisms employing mutually repelling permanent magnet rings and compressed linear elastic coil springs. They
discussed that despite the fact that local resonators can be, in theory, easily designed so bandgaps result in lower frequency
ranges, a traditional resonator-like scheme fails to create an ultra-low forbidden-zone — this arises because very heavy or
extremely soft resonators are required, as discussed before. In addition, it was seen in numerical simulations (Wang et al.,
2019) that the decrease of the resonator’s negative stiffness moves the bandgap to lower frequencies, that are considerably
lower in comparison to the resonant frequency of the metamaterial rod without NSD. An experimental transmittance curve
revealed that the rod’s bandgap is much wider than theoretical findings computed by the Harmonic Balance Method.
The authors attribute part of this mismatching due to springs’ variability and assembly errors, which leaded to different
resonant frequencies for the resonators, so that these multiple bandgaps merged into an ultra-wide (or robust) bandgap.
This realization was shown to be useful to broaden bandgaps in several works (Timorian et al., 2019; Fabro et al., 2021),
resulting in what one knows as rainbow metamaterials.

In light of the aforementioned, this work aims to combine a specially designed unit cell possessing an IAM to a one
degree of freedom (DoF) resonator portraying NSA. By leveraging the advantages of both IAM and local resonance, this
research seeks to generate low-frequency bandgaps and widen these regions of attenuation for vibroacoustic applications.
The IAM unit cell we adopted is very similar to the one designed by Mizukami et al. (2021), while the resonator scheme
was inspired by the work of Xiao et al. (2023). The one DoF resonator is constructed by connecting a linear elastic spring
to a mass, which in turn is connected to a damper. Additionally, a negative stiffness spring is connected in parallel to the
damper. In such circumstances, one aims to study the dynamic behavior of the resulting metastructure, shown in Fig. 1,
with respect to longitudinal waves. To the best of our knowledge, combining a unit cell owing IAM to a NSD has never
been investigated before. Resonant devices utilizing NSAs were studied recently, as discussed previously, and various
works indicated the possibility of easily tuning the position and width of forbidden zones generated in host structures
through NSAs, highlighting their potential applications in structural dynamics. Following this reasoning, NSDs might be
a relevant mechanism to tune the position and width of a bandgap ensuing from a metastructure with IAM, even after the
design of the unit cell, which is usually performed by topological optimization. In addition, understanding the dynamic
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behavior of a metamaterial-type structure, owning IAMs and NSAs, can be valuable to assess the viability of its use as an
appendage to conventional systems, aiming to reduce and control wave propagation behavior in the latter, for example.

Figure 1: A metastructure assembled based on unit cells possessing IAMs combined longitudinally to a one DoF local
resonator with negative stiffness (represented in magenta).

Beyond this introduction, this work has been divided into five sections. First, in Section 2 we briefly review the Wave-
based Finite Element Method (WFEM), which was used in the modeling of the periodic metastructure possessing IAM
and NSD shown in Fig. 1. Dispersion curves and longitudinal transmissibilities are presented in Section 3. Discussions
about the dynamics of the coupled system are supplied, as well. A summary of our findings and conclusions is given in
Section 4. Acknowledgments and references are provided at last.

2. MODELING

The one-dimensional periodic structure portrayed in Fig. 1, with 𝑁 = 10 unit cells, can be modeled by means of
the WFEM simply to reduce computational time during simulations, compared to conventional finite elements (FEs), for
example. The resonator’s properties are the positive and negative spring stiffnesses (𝑘 and 𝑘NS), mass (𝑚), and viscous
damping coefficient (𝑐). In such a case, one considers that a unit cell of the lattice is meshed by employing traditional FEs,
as depicted in Fig. 2. The degrees of freedom (DoFs) and loads of this meshed unit cell are then partitioned with respect
to their position in the cell, denoted as q 𝑗 and F 𝑗 , respectively, for 𝑗 ∈ {L,R, I}. Here, L and R identify the sets of DoFs
and loads which are located at the interfaces of the cell, specifically the left and right boundaries, while I refers to internal
quantities. Figure 2 also depicts the longitudinal DoF of the resonator, 𝑢𝑚, translational DoFs related to a particular node
s of the IAM, say, 𝑢s and 𝑣s — two DoFs per node —, and the nodes that couple the IAM with the NSA device, namely
nodes 1 and 𝑛. For the sake of simplicity, one assumes that the total number of nodes of the IAM unit cell corresponds to
𝑛 and related DoFs are organized ascendingly from 1 to 2𝑛.

𝑘

𝑘NS < 0

𝑢𝑚𝑐
𝑚

𝑢s

node s𝑣s

qI , FI

qL , FL qR , FR

node 𝑛node 1

meshing

Figure 2: A meta-device combining an IAM unit cell longitudinally with a damped one DoF local resonator with negative
stiffness (left) and their FE mesh (right). Negative spring stiffness is represented in magenta.

Accordingly, the equations of motion of the unit cell seen in Fig. 2 can be written as (M+M) ¥q+(C+C) ¤q+(K+K)q = f,
where ¥q, ¤q, q, and f are acceleration, velocity, displacement, and load vectors of size 2𝑛 + 1 × 1; M, C and K are matrices
of mass, damping and stiffness which refer to the dynamics of the baseline IAM unit cell, of size 2𝑛 + 1× 2𝑛 + 1, extracted
from FE software and padded with one zero row, and one zero column; and M, C and K are written as:

M =

𝑢1 𝑣1 . . . 𝑢𝑛 𝑣𝑛 𝑢𝑚



0 0 0 0 0 𝑢1

0 0 0 0 0 𝑣1

. . .
.
.
.

0 0 0 0 0 𝑢𝑛

0 0 0 0 0 𝑣𝑛

0 0 0 0 𝑚 𝑢𝑚

, C =

𝑢1 𝑣1 . . . 𝑢𝑛 𝑣𝑛 𝑢𝑚



0 0 0 0 0 𝑢1

0 0 0 0 0 𝑣1

. . .
.
.
.

0 0 𝑐 0 −𝑐 𝑢𝑛

0 0 0 0 0 𝑣𝑛

0 0 −𝑐 0 𝑐 𝑢𝑚

,

K =

𝑢1 𝑣1 . . . 𝑢𝑛 𝑣𝑛 𝑢𝑚



𝑘 0 0 0 −𝑘 𝑢1

0 0 0 0 0 𝑣1

. . . 0
.
.
.

0 0 𝑘NS 0 −𝑘NS 𝑢𝑛

0 0 0 0 0 𝑣𝑛

−𝑘 0 −𝑘NS 0 𝑘 + 𝑘NS 𝑢𝑚

. (1)
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In the frequency domain, one can write the unit cell’s equations of motion as Dq = F, with D = −𝜔2 (M+M) + i𝜔(C+
C) + (K + K) being its dynamic stiffness matrix, i the imaginary unit, and 𝜔 the circular frequency (Fabro et al., 2019).
By considering the previously established partitions regarding the location of DoFs and loads in the considered unit cell,
cf. Fig. 2, we are able to appropriately rewrite the dynamic stiffness matrix, as well as the corresponding displacement and
load vectors. After condensing internal DoFs and performing various tedious mathematical manipulations, one arrives at
the subsequent relation between adjacent unit cells, specifically (𝑛) and (𝑛 + 1):

u(𝑛+1)
L = Su(𝑛)

L + b(𝑛) , (2)

where u and S are known as the state vector and the unit cell transfer matrix, respectively, and b is a vector that collects
externally applied loads (Hoang et al., 2020). From the recurrence relation embedded in Eq. (2), one can derive the
following relationships that will support the subsequent mathematical developments:

u(𝑛+1)
L = S𝑛u(1)

L +
∑︁𝑛

𝑘=1
S𝑛−𝑘b(𝑘 ) , u(𝑁+1)

L = S𝑁+1−𝑛u(𝑛)
L +

∑︁𝑁

𝑘=𝑛
S𝑁−𝑘b(𝑘 ) . (3)

Periodic boundary conditions (BCs) can be resorted using the Bloch-Floquet theorem, i.e., u(𝑛+1)
L = exp(−i𝑘 𝑗Δ)u(𝑛)

L =

𝜇 𝑗u(𝑛)
L , where Δ denotes the length of the unit cell along the direction of wave propagation, 𝑘 𝑗 represents the 𝑗-th

wavenumber, and 𝜇 𝑗 corresponds to its corresponding propagation constant (Goto et al., 2020). By leveraging Eq. (2) and
the Bloch-Floquet theorem, one obtains a standard eigenvalue problem, written as (S − 𝜇 𝑗I)𝛟 𝑗 = 0 — I represents the
identity matrix —, whose solutions are the eigenpairs 𝜇 𝑗 and 𝛟 𝑗 ( 𝑗 = 1, ..., 2𝑛𝑏), being 𝑛𝑏 the number of DoFs pertaining
to the left (or right) interface of the unit cell (in our case 𝑛𝑏 = 6, cf. Fig. 2). After the computation of propagation
constants, wavenumbers can be obtained using 𝑘 𝑗 = (ln 𝜇 𝑗 )/(−iΔ). In the absence of any kind of damping, bandgaps
can be identified for the frequency ranges in which Im{𝑘 𝑗 } ≠ 0. Otherwise, the indicator of minimal evanescence ratio,
defined as (Collet et al., 2011):

Ind (𝜔) = min
𝑗

|Im {𝑘 𝑗 }|
|𝑘 𝑗 |

, (4)

may be used. In such a case, the attenuation zones are defined for the frequencies in which Ind (𝜔) is greater than a
threshold value IndT selected on a case-by-case basis. For the considered system, IndT is specified in Section 3.

In some cases, the standard eigenvalue problem encountered earlier is solved wrongly due to ill-conditioning issues.
These arise because the state vector includes quantities associated with DoFs and loads, which may have significantly
different magnitudes. As a result, an alternative well-conditioned formulation of the aforementioned standard eigenvalue
problem can be written, exploiting the symplectic nature of matrix S (Zhong and Williams, 1995):(

A − 𝜆 𝑗B
)
z 𝑗 = 0, where A = NJLT + LJNT, B = LJLT; (5)

and 𝜆 𝑗 and z 𝑗 correspond to the eigenvalues and eigenvectors of the alternative, better-conditioned eigenproblem. Expres-
sions for N, J, and L can be found elsewhere (Mencik and Duhamel, 2015).

Furthermore, since large condition numbers of A or B indicate a nearly singular problem, one can further alleviate
numerical issues by employing the following methodology. If cond (A) < cond (B), where cond (.) denotes the condition
number of a matrix, it is preferable to solve (Waki et al., 2006):(

A−1B − 𝜆̂ 𝑗I
)

z 𝑗 = 0, (6)

whose solutions provide the inverse eigenvalues and corresponding eigenvectors, namely 𝜆̂ 𝑗 ≡ 1/𝜆 𝑗 and z 𝑗 , respectively.
Additionally, practice experience indicates that when |Im{𝜆̂ 𝑗 }| → 0 and |Im{𝜆̂ 𝑗 }| ≠ 0, 𝜆̂ 𝑗 ≈ Re{𝜆̂ 𝑗 }.

It can also be shown that 𝜆 𝑗 = 𝜇 𝑗 + 1/𝜇 𝑗 , such that 𝜇 𝑗 = [𝜆 𝑗 ± (𝜆2
𝑗
− 4)0.5]/2 (Mencik and Ichchou, 2005). The

eigenvectors of the original eigenvalue problem, 𝛟 𝑗 , can be retrieved following the procedure outlined in (Mencik and
Duhamel, 2015).

Eigensolutions computed before can be then grouped into matrices, according to the direction of wave propagation,
i.e., into those related to positive-, (𝜇 𝑗 , 𝛟 𝑗 ), and negative-going waves, (μ∗

𝑗
, 𝛟∗

𝑗 ) ( 𝑗 = 1, ..., 𝑛𝑏) (Duhamel et al., 2006;
Waki et al., 2009), so that one obtains:

𝛍 = diag(𝜇1, . . . , 𝜇𝑛𝑏 ), 𝛍∗ = diag(𝜇∗1, . . . , 𝜇
∗
𝑛𝑏
), 𝚽 = [𝛟1 . . . 𝛟𝑛𝑏

] =
[
𝚽𝑞

𝚽𝐹

]
, 𝚽∗ = [𝛟∗

1 . . . 𝛟
∗
𝑛𝑏
] =

[
𝚽∗

𝑞

𝚽∗
𝐹

]
, (7)

with 𝑞 and 𝐹 used to identify partitions of 𝚽 and 𝚽∗ related to DoFs and loads. At this point, one highlights that any
frequency-tracking procedure, such as the modal assurance criterion (MAC) or another one that exploits the symplectic
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nature of S can be employed to track the wavemodes with respect to frequency (Mencik, 2010). In addition, it is important
to note that the eigenvectors must be properly normalized (Mencik, 2014) so expressions presented afterward are valid.

The forced response of the periodic structure can be computed by expressing the state vector and the vector of
externally applied loads as a linear combination of wave amplitudes, utilizing the computed wave modes. Building upon
this expansion, one can write:

u(𝑛)
L = 𝚽Q(𝑛) +𝚽∗Q∗(𝑛) , (8)

and
b(𝑛) = 𝚽Q(𝑛)

𝐵
+𝚽∗Q∗(𝑛)

𝐵
, (9)

where Q(𝑛) , Q∗(𝑛) , Q(𝑛)
𝐵

and Q∗(𝑛)
𝐵

are amplitude vectors. By manipulating Eq. (3) one arrives at:

Q(𝑛) = 𝛍𝑛−1Q(1) +
∑︁𝑛−1

𝑘=1
𝛍𝑛−𝑘−1Q(𝑘 )

𝐵
, (10)

Q∗(𝑛) = 𝛍𝑁+1−𝑛Q∗(𝑁+1) −
∑︁𝑁

𝑘=𝑛
𝛍𝑘−𝑛+1Q∗(𝑘 )

𝐵
, (11)

being Q(𝑘 )
𝐵

and Q∗(𝑘 )
𝐵

obtained after manipulating Eq. (9), given by:

Q(𝑘 )
𝐵

=

(
𝛍𝚽∗T

𝑞 DLI +𝚽∗T
𝑞 DRI

)
F(𝑘 )

I −𝚽∗T
𝑞 F(𝑘 )

𝐵
, (12)

Q∗(𝑘 )
𝐵

= −
(
𝛍∗𝚽T

𝑞DLI +𝚽T
𝑞DRI

)
F(𝑘 )

I +𝚽T
𝑞F(𝑘 )

𝐵
. (13)

Once the state vector u(𝑛)
L is written in terms of DoFs and loads, say q(𝑛)

L and F(𝑛)
L , and considering the partitions

introduced in Eq. (7), combining Eqs. (8), (10), and (11) yields the following result:

q(𝑛)
L = 𝚽𝑞𝛍

𝑛−1Q +𝚽∗
𝑞𝛍

𝑁+1−𝑛Q∗ +𝚽𝑞

∑︁𝑛−1

𝑘=1
𝛍𝑛−𝑘−1Q(𝑘 )

𝐵
−𝚽∗

𝑞

∑︁𝑁

𝑘=𝑛
𝛍𝑘+1−𝑛Q∗(𝑘 )

𝐵
, (14)

−F(𝑛)
L = 𝚽𝐹𝛍

𝑛−1Q +𝚽∗
𝐹𝛍

𝑁+1−𝑛Q∗ +𝚽𝐹

∑︁𝑛−1

𝑘=1
𝛍𝑛−𝑘−1Q(𝑘 )

𝐵
−𝚽∗

𝐹

∑︁𝑁

𝑘=𝑛
𝛍𝑘+1−𝑛Q∗(𝑘 )

𝐵
, (15)

with Q ≡ Q(1) and Q∗ ≡ Q∗(𝑁+1) . Equations (14) and (15) can be utilized alongside BCs to establish a linear system for
Q and Q∗. Solving this system enables the determination of any response of the periodic structure under consideration.

3. NUMERICAL SIMULATIONS

Numerical experiments portrayed in this section consider the FE mesh depicted in Fig. 2, whose dimensions are shown
in Fig. 3, to model the metastructure seen in Fig. 1. As can be noticed from Fig. 2, triangular and quadrilateral elements
with 2 translational DoFs per node were used to mesh the geometry. The baseline unit cell FE matrices, M and K, were
extracted from FE software assuming plane stress state, with a thickness of 30 mm. Damping is not taken into account for
the baseline unit cell (C = 0) to study the isolated effect of the NSA in the dynamic behavior of the meta-device shown in
Fig. 2, regarding vibration attenuation properties. In addition, the baseline unit cell is regarded as being fabricated using
additive manufacturing techniques, specifically using polylactic acid (PLA), for which its elastic modulus, specific mass
and Poisson’s ratio are 2.35 GPa, 1037.5 kg m−3, and 0.3, respectively. Furthermore, a reduced wave basis of six left- and
right-going wave modes, i.e., 𝑛𝑏 = 3, was employed to characterize the dynamic behavior of the cell incorporating IAM.
This choice was made because highly evanescent wave modes often introduce numerical challenges in calculations and
have negligible contributions to the response of the meta-device under investigation, which functions as a waveguide.

Δ = 112 mm

Figure 3: Baseline unit cell dimensions (mm) whose FE model was shown in Fig. 2.

First, employing the theory reviewed in Section 2, one is able to compute the dispersion curves for the undamped
baseline unit cell portrayed in Fig. 3. Since the analyzed system does not exhibit any non-reciprocal behavior in terms of
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wave propagation characteristics, the dispersion curves are symmetric with respect to the abscissa axis. For this reason,
Fig. 4 illustrates the plot of positive values of Re {𝑘 𝑗 } with negative values of Im {𝑘 𝑗 }. These curves are related to
longitudinal and bending wave modes that propagate or decay in space in the left and right directions. Of particular interest
in this work, is the pair of wave modes that is related to longitudinal motion, to exploit the coupling scheme portrayed in
Fig. 1 between the baseline IAM unit cell and the NSA. It should be noted that in this specific coupling configuration, the
resonator solely affects the longitudinal motion of the meta-device illustrated in Fig. 2. Accordingly, results shown next
correspond to the longitudinal wave mode, for which there exist an attenuation zone between 242 and 685 Hz (Im {𝑘 𝑗 } ≠ 0)
in Fig. 4, highlighted by the gray shaded area.
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Figure 4: Dispersion curves (positive values of Re {𝑘 𝑗 } and negative values of Im {𝑘 𝑗 }) computed for the undamped
(C = 0) baseline unit cell incorporating IAM depicted in Fig. 3 through the Bloch-Floquet theorem. The correspondence
between the wavenumbers depicted in Re {𝑘 𝑗 } and Im {𝑘 𝑗 } is illustrated by the dispersion curves with matching colors.

In this study, it is initially assumed that the viscous damping coefficient and negative stiffness are zero, 𝑐 = 𝑘NS = 0,
for the meta-device depicted in Fig. 2. Furthermore, the mass of the resonator 𝑚 is related to the unit cell mass, denoted as
𝑚IAM = 60 g, through the parameter 𝛾 = 𝑚/𝑚IAM. Thus, let the resonator’s natural frequency,𝜔 =

√︁
𝑘/𝑚 =

√︁
𝑘/(𝛾 𝑚IAM),

be tuned at 220 Hz, for 𝛾 ∈ {0.2, 0.4, 0.6, 0.8, 1, 5}, so that the positive spring stiffness is obtained from 𝑘 = 𝛾𝜔2𝑚IAM.
In this case, Fig. 5 displays the corresponding imaginary part of left-going longitudinal wave modes and the evolution of
the bandgap width. As can be noticed from Fig. 5, an attenuation zone opens near the resonator’s natural frequency in all
considered cases. In addition, as one may expect, the increase of the resonator’s mass corroborates to widen the attenuation

0 200 400 600 800 1000
−80

−60

−40

−20

0
bandgap evolution

Frequency (Hz)

Im
{𝑘

lo
ng

itu
di

na
l}

(r
ad

m
−1

)

𝑓𝑛 = 220 Hz
𝛾 = 0.2
𝛾 = 0.4
𝛾 = 0.6
𝛾 = 0.8
𝛾 = 1
𝛾 = 5

Figure 5: Imaginary part of left-going longitudinal wave modes and the evolution of the bandgap width computed for the
undamped (C = 0) unit cell incorporating IAM depicted in Fig. 2 through the Bloch-Floquet theorem. The resonator’s
viscous damping coefficient and negative stiffness were taken as zero (𝑐 = 𝑘NS = 0). Correspondence between the
wavenumbers, bandgap evolution, and the associated legends is established through color matching.
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zone ensuing of local resonance. However, the same figure shows that at a certain condition, an excessive increase of
𝑚 ∝ 𝛾 greatly reduces the Bragg-bandgap width resulting from the undamped baseline unit cell which possesses IAM.
Lastly, it should be mentioned that the upper bounds of the bandgaps associated with the IAM remain unaffected for all
cases depicted in Fig. 5. Since in most engineering applications lightweight design is of concern, 𝛾 was selected as 0.2
for the numerical experiments shown afterwards. This value also provides a good compromise between a wider bandgap
caused by the IAM and the formation of the tuned attenuation zone at approximately 220 Hz.

The inclusion of the viscous damping coefficient is now taken into account in our simulations while keeping 𝑘NS = 0.
This allows us to investigate the dissipation properties of the unit cell portrayed in Fig. 2, which arise from the resonator’s
dynamics. As discussed earlier in Section 2, the indicator of minimal evanescence ratio was utilized to define the
attenuation zones in the presence of damping, given that all wave numbers are complex in such scenario. The threshold
value IndT was selected based on the following expression (Salsa et al., 2023):

IndT = 5% · (max
𝜔

Ind(𝜔) − min
𝜔

Ind(𝜔)). (16)

Thus, Fig. 6 depicts the dispersion curves corresponding to longitudinal wave modes for 𝑐 ∈ {0.01, 0.1, 2, 4, 6, 8}N s m−1.
As can be seen in Fig. 6, the inclusion of a viscous dashpot in series with the resonator, with 𝑐 greater or equal than
2 N s m−1, proves to be an effective approach to merge the wider bandgap resulting from the IAM unit cell with the
narrower one associated with local resonance. This results in the formation of a much broader coupled attenuation zone.
In the context of wave manipulation in metamaterials, this strategy to merge two close bandgaps is what one knows as
metadamping. Similar to what was seen earlier in Fig. 5, the upper bound of the forbidden zones ensuing from IAM
remains unchanged for 𝑐 = 0.01 and 𝑐 = 0.1 N s m−1 in Fig. 6. The same behavior persists when both bandgaps are merged
into a wider one, that is, for values of the viscous damping coefficient equal to 2, 4, 6, and 8 N s m−1.
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Figure 6: Imaginary part of left-going longitudinal wave modes and the evolution of the bandgap width computed for the
unit cell incorporating IAM depicted in Fig. 2 through the Bloch-Floquet theorem. The resonator’s negative stiffness was
taken as zero (𝑘NS = 0) and C = 0. Correspondence between the wavenumbers, bandgap evolution, and the associated
legends is established through color matching.

In order to provide a clearer understanding of the utilization of the indicator of minimal evanescence ratio for identifying
the attenuation zones provided in Fig. 6, Fig. 7 shows the values of Ind (𝜔) and IndT plotted against 𝜔. As explained in
Section 2, the attenuation zones exist at frequencies for which Ind (𝜔) > IndT. Therefore, results exhibited in Fig. 7, with
support of those shown in Fig. 6, confirm the effectiveness of the methodology employed for identifying the attenuation
zones in damped systems. Next, based on results presented in Figs. 6 and 7, to conduct further analyses, one fixes the
viscous damping coefficient as 𝑐 = 2 N s m−1. From the considered cases, this value represents the minimum damping
required to combine the bandgaps resulting from the IAM and local resonance.

Finally, parametric analyses are conducted to examine the impact of negative spring stiffness values on the dynamic
behavior of the meta-device depicted in Fig. 2. For simplicity, let us assume that the negative stiffness spring value 𝑘NS
is related to the resonator’s positive stiffness through the coefficient 𝛼, i.e., 𝑘NS = −𝛼 𝑘 . Accordingly, Fig. 8 depicts the
dispersion curves for left-going longitudinal wave-modes corresponding to 𝛼 ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 1}. As one may
notice from Fig. 8, small (absolute) values of negative stiffness, such as the one that arises when 𝛼 = 0.1, shift the coupled
bandgap lower bound to smaller frequency ranges while leaving its upper bound unchanged. This behavior persists for
𝛼 = 0.2 and 𝛼 = 0.3. This occurs because the negative spring stiffness, when combined in parallel with a dashpot, as
shown in the case depicted in Fig. 2, facilitates the dissipation of energy in the damper (Xiao et al., 2023). However, raising
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Figure 7: Indicators of minimal evanescence ratio and threshold values used to establish the attenuation zones seen in
Fig. 6 for 𝑐 ∈ {0.01, 0.1, 2, 4, 6, 8}N s m−1. Such forbidden zones are defined at frequencies for which Ind (𝜔) > IndT.

the absolute value of the negative spring stiffness too much eventually splits the merged bandgaps, as can be seen for
𝛼 = 0.4, 𝛼 = 0.5, and 𝛼 = 1, while keeping the lower and upper bounds of the bandgap associated with the IAM unaltered.
Moreover, making the negative spring stiffness value exactly equal to minus the positive spring stiffness, i.e., when 𝛼 = 1,
causes the lower bound of the bandgap related to local resonance to shift towards approximately zero frequency. This
realization comes at the cost of reducing the level of attenuation of the wave mode within the forbidden zone, as clearly
observed in Fig. 8. It should be mentioned that the condition where 𝛼 = 1 results in a configuration of zero static stiffness
for the NSA, which greatly impairs the practical use and implementation of the meta-device as a vibration absorber.
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Figure 8: Imaginary part of left-going longitudinal wave modes and the evolution of the bandgap width computed for the
unit cell incorporating IAM depicted in Fig. 2 through the Bloch-Floquet theorem (C = 0). Correspondence between the
wavenumbers, bandgap evolution, and the associated legends is established through color matching.

At last, one checks if the previously observed results are valid for a finite system with 𝑁 = 10 unit cells, as represented
in Fig. 1, by employing the theory discussed in Section 2 to compute a forced response. As a result, Fig. 9 illustrates, on
the right, a transmissibility curve for the input and output locations schematically shown on the left. Here, we assumed
𝛾 = 0.2, 𝑐 = 2 N s m−1, and 𝛼 = 0.2. As predicted by the dispersion curve in Fig. 8 (for 𝛼 = 0.2), Fig. 9 shows on the
right that the attenuation zone resulting from the IAM got merged with the forbidden zone associated with the NSA, which
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arises from local resonance. This is true because the system’s bandgap computed using the Bloch-Floquet theory and the
indicator of minimal evanescence ratio, highlighted by the gray shaded area in Fig. 9, closely match the frequency range
of attenuation in the transmissibility curve, where it is less than one.
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Figure 9: Input and output locations (on the left) used to calculate the forced response of the system portrayed in Fig. 1,
which is shown on the right. Negative spring stiffness is represented in magenta.

4. CONCLUDING REMARKS

This article focuses on the longitudinal dynamic behavior of a unit cell that incorporates IAM coupled with a NSA. The
baseline unit cell was designed through topological optimization and exhibits a wide bandgap for longitudinal wave modes
in the low-frequency range, specifically between 242 and 685 Hz. Our study demonstrates that this attenuation range
can be further enhanced by incorporating NSAs, even after the baseline unit cell design is optimized using algorithms.
Numerical results reveal the potential to increase the bandgap width in a system that combines IAM and local resonance.
It was observed that, in the investigated resonator-like scheme, the inclusion of a negative stiffness spring in parallel with a
dashpot enhances the wave attenuation properties of the meta-device. This is due to the negative stiffness spring facilitating
the motion between its terminals, thereby promoting energy dissipation in the dashpot. These findings present a promising
approach for designing unit cells that incorporate IAMs and take advantage of NSAs, offering valuable opportunities for
vibration mitigation in vibroacoustic problems.
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