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Abstract. The present work has as object of study, development of the temperature and velocity profile and the determina-
tion of the thermal and hydrodynamic boundary layers thicknesses in the laminar flow. The equations of the momentum
and energy are transformed using change of variable to determine of the hydrodynamic and thermal boundary layers
thicknesses, respectively. The main objective of this article is to have a general view of the behavior of the thermal and
hydrodynamic boundary layers in a conduction-external convection conjugated problem. To solve the coupled problem
it was necessary to use, in the hydrodynamic field, the exact analytical solution of the hydrodynamic boundary layer
thickness, while in the thermal field the relation between the Prandtl number and the thermal boundary layer thickness
was used. GITT was able to solve the problem of the hydrodynamic and thermal boundary layers, making it possible
to determine the hydrodynamic boundary layer thickness without using the similarity method, which shows an unprece-
dented treatment in solving this problem. The evolution of the position of the thermal and hydrodynamic boundary layer
was calculated and compared with the Blasius solution and with approximate polynomial solutions, obtaining excellent
results.

Keywords: Boundary Layer Thickness, Conduction-Convection Conjugate Problem, Generalized Integral Transform
Technique

1. INTRODUCTION

Boundary layer theory is considered the cornerstone of our knowledge of fluid flow over a surface that not only presents
some intriguing physical phenomena of fluid dynamics, but is also fundamental to practical engineering problems. In
1908, H. Blasius published a paper discussing two-dimensional flow on a flat plate. The Blasius-derived boundary-layer
equations were much simpler than the Navier-Stokes equations. Blasius found that these boundary-layer equations in
certain cases can be reduced to a single ordinary differential equation for a solution of similarity, called the Blasius
equation.

Until 1960, several researchers contributed significantly to solving the boundary layer problem using similarity so-
lutions (Blasius, 1908; Millikan, 1936; Hartree, 1939; Goldstein, 1948; Terrill, 1960). With the evolution of the latest
generation computers and the increase in the capacity of processors available on the market, has increased the number
of solutions to equations that were previously considered impossible to solve due to the need for memory to run the
programs, with this, several researchers have sought new solutions for Blasius problem using algorithms or solving the
problem through series in order to find a solution that better represents the mathematical model and the physical phe-
nomenon (Asaithambi, 2004; Fazio, 2009, 2013; Parveen, 2016; Jaguaribe, 2020).

The vast majority of heat transfer problems found in nature take into account the effects of heat conduction and con-
vection, however, there are still great difficulties in simulating these problems with good precision and with reduced
computational cost. Perelman (1961) used the term conjugated heat transfer to describe the coupled problem of convec-
tion heat transfer in the thermal boundary layer of a flow over a finite-thickness flat plate and the two-dimensional heat
conduction in the solid wall. Identified a parameter that combined the fluid and solid conductivity ratio with Prandtl and
Reynolds number. For this conjugated conduction-external convection problem, approximate solutions was found in the
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open literature available, using the Integral Method in conjunction with the Finite Difference Method or purely numeri-
cal solutions. It is worth mentioning that these works demonstrated the mathematical and / or computational difficulties
associated with the solution of the conjugated problem(Sunden, 1989; Lachi et al., 1996; Mosaad, 1999; Chida, 2000).
Naveira et al. (2007) studied the conjugated transient external conduction-convection problem by applying a heat flow
the wall through the Generalized Integral Transform Technique, using the Blasius solution in the hydrodynamic boundary
layer.

The main objective of this article is to have a general view of the behavior of the hydrodynamic and thermal boundary
layer in a conjugated conduction-external convection problem in steady state using the velocity profile under development
through the application of the Generalized Integral Transform Technique analyzing the velocity and temperature field,
using heat transfer coefficients defined a prior that were adopted in previous works in the literature with good results
achieved.

2. PROBLEM FORMULATION

The considered problem involves laminar incompressible flow of a Newtonian fluid over a flat plate, with steady-state
flow. The fluid flows with a free stream velocity u∞ , which arrives at the plate front edge at the temperature T∞ , conform
show in Fig. 1. The wall is considered to participate on the heat transfer problem, with thickness, e, length, L, and related
thermophysical properties. The boundary layer equations are assumed to be valid for the flow and heat transfer problem
within the fluid, and the conjugated conduction–external convection problem is written as:

Figure 1. Description of physical problem and coordinates system.
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with initial conditions
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u(0, y∗) = U∞ ; v(0, y∗) = 0 ; T (0, y∗) = T∞ ; 0 < y∗ <∞ (5)

and boundary conditions

u(x∗, 0) = 0 ; u(x∗, δ∗(x∗)) = U∞ ; v(x∗, 0) = v(x∗, δ∗(x∗)) = 0 ;
∂T (x∗, y∗)

∂y∗

∣∣∣∣
y∗=0

= −δ∗t (x∗) ; T (x∗, 0) = T∞

(6)

The hydrodynamic and conjugated conduction-convection problem can also be rewritten after introducing the follow-
ing dimensionless variables:

U =
u

U∞
; V =

v

U∞
; x =

x∗

L
; y =

y∗

L
; δ =

δ∗

L
; δt =

δ∗t
L

(7)

p∗ =
p

LU2
∞

; ReL =
U∞L

ν
; Pe =

U∞L

α
; θ =

(T − T∞)
qrefL
K

(8)

and introduce a domain regularization transformation for the spatial domain written as:

η =
y

δ(x)
; ηt =

y

δt(x)
; χ = x (9)

Then, the dimensionless form for the flow and energy equation after the domain transformation for the spatial domain
written as:

Continuity:
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δt(χ)2
∂2θ

∂η2
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with initial conditions

u(0, η) = 1 ; v(0, η) = 0 ; θ(0, η) = 0 (14)

and boundary conditions

U(χ, 0) = 0 ; U(χ, 1) = 1 ; V (χ, 0) = V (χ, 1) = 0 ;
∂θ(χ, ηt)

∂ηt
|ηt=0 = −δ∗t (x∗) ; 0 < χ < L (15)
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3. SOLUTION METHODOLOGY

For the flow and thermal problem solution, since there is preferential convective direction aligned with the flow, the
integral transformation was chosen to be operator solely in the transversal direction, along which diffusion predominates.
As the proposed system of equations has non-homogeneous boundary conditions, in order to improving the performance
of GITT, it is necessary to homogenize them. Filters and their solutions are written as:

U(χ, η) = U∗(χ, η) + UF (η) ; UF (η) = η (16)

θ(χ, ηt) = θ∗(χ, ηt) + TF (χ, ηt) ; TF (χ, ηt) =
δt(χ)

2
(1− ηt)2 (17)

Applying the proposed filtering solutions, the continuity, momentum and energy equations is given by:

∂U∗

∂χ
− 1

δ(χ)

dδ(χ)

dχ
η

(
∂U∗
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+ 1

)
+

1

δ(χ)

∂V
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= 0 ; 0 < χ < 1 ; 0 < η < 1, (18)
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(
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∂η
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∗

dχ
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1
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(19)
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(
∂θ∗

∂χ
− η

δt(χ)

dδt(χ)

dχ
η
∂θ∗

∂η

)
+

V
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∂η
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=

1

Pe

1

δt(χ)2

(
∂2θ∗

∂η2
− ∂2TF

∂η2

)
= 0 (20)

Following the basic steps of GITT (Cotta, 2020), the appropriate auxiliary problems for the process of integral trans-
form, are given as follows:

Hydrodynamic Field

d2ψ(η)

dη2
+ µ2

iψ(η) = 0 ; ψ(0) = 0 ; ψ(1) = 0, (21)

which is readily solved eigenfunctions, normalized eigenfunctions, eigenvalues and norms, respectively, as:

ψ(η) = Sin[µi(η)] ; ψ̃ (η) =
ψ (η)√
N i

; µi = iπ ; Ni =

∫ 1

0

ψi (η)ψi (η) dη =
1

2
; i = 1, 2, 3... (22)

Thermal Field

d2φ(ηt)

dη2t
+ Ω2

iφ(ηt) = 0 ;
dφ(ηt)

dη2t

∣∣∣∣
ηt=0

= 0 ; φ(1) = 0, (23)

which is readily solved eigenfunctions, normalized eigenfunctions, eigenvalues and norms, respectively, as:

φ(ηt) = Cos[Ωiηt] ; φ̃ (ηt) =
φ (ηt)√
M i

; Ωi =
(2i− 1)π

2
; Mi =

∫ 1

0

φi (ηt)φi (ηt) dηt =
1

2
; i = 1, 2, 3... (24)

The eigenvalue problems Eqs. (21) and (23) allows definition of the following transform-inverse pairs:

U∗j (χ) =

∫ 1

0

ψ̃j (η)U∗(χ, η)dη → Transform ; U∗(χ, η) =

∞∑
j=1

ψ̃j (η)Uj(χ) → Inverse (25)

θ∗j (χ) =

∫ 1

0

φ̃(Ωj)θ
∗(χ, ηt)dηt → Transform ; θ∗(χ, ηt) =

∞∑
j=1

φ̃j (ηt) θj(χ) → Inverse (26)
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Applying the operators over Eqs. (19) and (20), followed by the inverse formula then results:
Momentum Equation:

δ(χ)2
∞∑
k=1

 ∞∑
j=1

AVijkUj(χ) + δjkBVik

 dUk(χ)

dχ
−δ(χ)

dδ(χ)

dχ

∞∑
k=1

 ∞∑
j=1

CVijkUj(χ) +DVik + EVik

Uk(χ)

− δ(χ)
dδ(χ)

dχ
FVi = −δ(χ)2

dp

dχ
(χ)FFi −

µ2
i

ReL
Ui(χ) (27)

With the coefficients written below:

AVijk =

∫ 1

0

ψ̃i (η) ψ̃j (η) ψ̃k (η) dη+

∫ 1

0

ψ̃i (η)Hk(η)
dψ̃j (η)

dη
dη ; BVij =

∫ 1

0

ψ̃i (η) η ψ̃j (η) dη+

∫ 1

0

ψ̃i (η)Hj(η)dη

(28)

CVijk =

∫ 1

0

ψ̃i (η) ηψ̃j (η)
dψ̃k (η)

dη
dη +

∫ 1

0

ψ̃i (η)Fk (η)
dψ̃j (η)

dη
dη ; Fi(η) =

∫ 1

η

η
d̃ψi (η)

dη
dη (29)

DVik =

∫ 1

0

ψ̃i (η) η2
dψ̃k (η)

dη
dη +

∫ 1

0

ψ̃i (η) ηψ̃k (η) dη ; G(η) =
1

2
− η2

2
; Hi(η) =

∫ 1

η

ψ̃i (η) dη (30)

EVik =

∫ 1

0

ψ̃i (η)G(η)
dψ̃k (η)

dη
dη +

∫ 1

0

ψ̃i (η)Hk(η)dη ; FVi =

∫ 1

0

ψ̃i (η) η2dη +

∫ 1

0

ψ̃i (η)G(η)dη (31)

Pressure gradient:

dp(χ)

dχ
= 2

∞∑
k=1

 ∞∑
j=1

APjkUj(χ) +BPk

 dUk(χ)

dχ
− 1

ReLδ(χ)2

∞∑
j=1

(Cos[µj ]µj − Cos[0]µj)

N1
j /2

Uj(χ)

− 2

δ(χ)

dδ(χ)

dχ

∞∑
k=1

 ∞∑
j=1

CPjkUj(χ) +DPk + EPk

Uk(χ)− 2

δ(χ)

dδ(χ)

dχ

1

3
(32)

With the coefficients written below:

APjk =

∫ 1

0

ψ̃j (η) ψ̃k (η) dη ; BPk =

∫ 1

0

ηψ̃k (η) dη ; CPjk =

∫ 1

0

ψ̃j (η) η
dψ̃k (η)

dη
dη (33)

DPk =

∫ 1

0

ηη
dψ̃k (η)

dη
dη ; EPk =

∫ 1

0

ηψ̃k (η) dη ; (34)

Energy Equation:
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δT (χ)2
∞∑
k=1

 ∞∑
j=1

(ATijkUj(χ) +
δT (χ)

δ(χ)
ATFik)

 dθk(χ)

dχ
+
δT (χ)2

2

dδT (χ)

dδ(χ)

 ∞∑
j=1

(BTijUj(χ) +
δT (χ)

δ(χ)
BTFi


− δT (χ)

dδT (χ)

dχ

∞∑
k=1

 ∞∑
j=1

CTijkUj(χ) +
δT (χ)

δ(χ)
CTFik)

 θk(χ) + δT (χ)2δ(χ)

∞∑
j=1

HTij
dUj(χ)

dχ

+ δT (χ)2
dδT (χ)

dχ

 ∞∑
j=1

(DTijUj(χ) +
δT (χ)

δ(χ)
DTFi)

+ δT (χ)δ(χ)

∞∑
k=1

 ∞∑
j=1

(ETijk
dUj(χ)

dχ

 θk(χ)

− δT (χ)
dδ(χ)

dχ

∞∑
k=1

 ∞∑
j=1

(FTijkUj(χ)

 θk(χ) +

∞∑
k=1

(
GT1ik −

dδT (χ)

dχ
GT2ik

)
θk(χ)

− δT (χ)2
dδ(χ)

dχ

 ∞∑
j=1

ITijUj(χ) + (JT1i −
dδT (χ)

dχ
JT2i)

 =
Ω2
i

Pe
θi(χ) +

δT (χ)

Pe
LTi (35)

With the coefficients written below:

ATijk =

∫ 1

0

φ̃i (ηt) ψ̃j (η) φ̃k (ηt) dηt ; ATFik =

∫ 1

0

φ̃i (ηt) ηtφ̃k (η) dηt ; BTij =

∫ 1

0

φ̃i (ηt) ψ̃j (η) (1−ηt)2dηt

(36)

BTFi =

∫ 1

0

φ̃i (ηt) η(1−ηt)2dηt ; CTijk =

∫ 1

0

φ̃i (ηt) ψ̃j (η) ηt
dφ̃k (η)

dηt
dηt ; CTFik =

∫ 1

0

φ̃i (ηt) ηηt
dφ̃j (ηt)

dηt
dηt

(37)

DTFi =

∫ 1

0

φ̃i (ηt) ηηt(1−ηt)dηt ; DTij =

∫ 1

0

φ̃i (ηt) ψ̃j (η) ηt(1−ηt)dηt ; ETijk =

∫ 1

0

φ̃i (ηt)Hj(η)
dφ̃k (ηt)

dηt
dηt

(38)

FTijk =

∫ 1

0

φ̃i (ηt)Fj(η)
dφ̃k (ηt)

dηt
dηt ; GTij =

∫ 1

0

φ̃i (ηt)G(η)
dφ̃k (ηt)

dηt
dηt ; HTi =

∫ 1

0

φ̃i (ηt)Hj(η)(1−ηt)dηt

(39)

ITij =

∫ 1

0

φ̃i (ηt)Fj(η)(1− ηt)dηt ; JTij =

∫ 1

0

φ̃i (ηt)G(η)(1− ηt)dηt ; LTi =

∫ 1

0

φ̃i (ηt) dηt (40)

The initial conditions of the hydrodynamic and thermal field are transformed and written as:

Ui(0) =

∫ 1

0

ψ̃j (η) (U∗(0, ηt)− UF (η)) dη = FFi−HHi ; θj(0) =

∫ 1

0

φ̃j (ηt) (θ∗(0, ηt)− TF (0, ηt)) dηt (41)

In order to solve the coupled differential equation system, it is necessary to define the equations for the hydrodynamic
and thermal layer thickness extracted from Naveira (2006) and Ozisik (1985), written as:

dδ(χ)

dχ
= 2.50 χ−1/2 Re

−1/2
L ;

dδt(χ)

dχ
= 2.42048 Pr−1/3 χ1/2 Re

−1/2
L (42)
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Eqs. (27), (32), (35) and (42) form an infinite system of one-dimensional partial differential equations for the trans-
formed potentials. For computational purposes this system is truncated to a sufficient large finite order, N (eigenvalues
number), for the required convergence control. Once the transformed potentials are numerically computed, the inversion
formula, Eqs. (25) - (26), is employed to reconstruct the filtered potentials, in explicit form in the transverse coordinate,
and after adding the filtering solution, the dimensionless velocity and temperature distribution, is recovered everywhere
within the region along the process.

4. RESULTS AND DISCUSSION

The Generalized Integral Transform Technique (GITT) proved to be an important tool to solve the proposed problem,
being able to study and determine the thicknesses of the Thermal and Hydrodynamic boundary layer.

The developed Mathematica code incorporates all the symbolic and numerical computational steps in the solution
procedure, being validated in several ways, including the comparison with the Blasius solution in the hydrodynamic field
and with results obtained by Naveira (2006) for the thermal field.

In most of the works published in the literature, the velocity profile is determined using the Blasius solution and only
the temperature profile is calculated. In this work, the hydrodynamic and thermal problems are solved simultaneously,
using the momentum and continuity equation to determine the axial and radial velocity and the pressure gradient. Next,
the energy equation is used to calculate the temperature field.

Figure 2 shows the behavior of the boundary layer thickness as a function of the position x(m), where we observe the
obtained solution by present work is relatively close to the Blasius solution. The boundary layer thickness graph show
even more deviation between proposed solution and the fifth-order and third-order Karman-Pohlhausen approximations.
These two polynomial approximations were chosen because Eyo et al. (2012) performs the error calculations for the
similarity parameter, reaching 7.18 and 3.58 %, respectively. The others polynomial approximations of different order
showed larger errors.

Figure 2. Behavior of the hydrodynamic boundary layer thickness as a function of the position x (m)

In order to compare the results of the temperature field we will use the data adopted by Naveira (2006) . Air was
always the cooling fluid and the adopted numerical values in the simulations for the related governing parameters were:

L = 0.1m; U∞ = 1m/s; T∞ = 20oC; α = 2.22x10−5m2/s;

k = 0.0262W/(moC); ν = 1.57x10−5m2/s; φref = 100W/m2;

Figure 3 shows the behavior of the temperature as a function of the x and y position along the plate, using the General-
ized Integral Transform Technique, presenting a good harmony with the solution obtained by Naveira (2006) . It is worth
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noting that as can be seen, in relation to the x position, the temperature distribution is similar to the profile of the thermal
boundary layer thickness, since the y position is very small, there is no variation significant in this direction. This can be
proved with the values presented in Table 2, where we fix a position in y and vary the position x.

Figure 3. Temperature profile as a function of the x and y positions.

Figure 4 show the behavior of the thicknesses of the hydrodynamic and thermal boundary layers calculated by present
work and compared with Naveira (2006), where it is verified that the thermal boundary layer thickness is greater hydro-
dynamic, since the number of Prandt adopted is less than 1.

Figure 4. Behavior of the hydrodynamic and Thermal boundary layer thicknesses as a function of the position x (m)

Table 1 show the convergence of the thickness of the hydrodynamic boundary layer in comparison with Naveira
(2006) and exact solutions, obtaining excellent results, with acceptable errors in the order of 1 %, which allows to prove
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that the model adopted using the NDSolve routine can be perfectly used. Comparing with Eyo et al. (2012) η∞ =
5.1793 and η∞ = 4.6409 we found errors in the order of 3.58 and 7.18 %, respectively. These errors obtained by
Eyo et al. (2012) must to the applied methodology, where uses a integral equation for two dimensional laminar flow
(Pohlhausen, 1921), finding η∞ distant from the exact solution.

Table 1. Hydrodynamic boundary layer thickness as a function of position X(m) using NDSolve routine and comparing
with others solutions that have different similarity parameters (η∞).

x(m) Present Work Exact Solution Naveira (2006) Eyo Et Al (2012) Eyo Et Al (2012)
η∞ = 5.00 η∞ = 5.00 η∞ = 4.96 η∞ = 5.1793 η∞ = 4.6409

1 0.0626492 0.0626498 0.0621486 0.0648964 0.0581503
0.9 0.0594343 0.0594348 0.0589594 0.0615662 0.0551662
0.8 0.0560352 0.0560357 0.0555874 0.0580451 0.0520112
0.7 0.0524161 0.0524166 0.0519973 0.0542963 0.0486520
0.6 0.0485278 0.0485283 0.0481401 0.0502686 0.0450430
0.5 0.0442996 0.0443001 0.0439457 0.0458887 0.0411185
0.4 0.0396227 0.0396232 0.0393062 0.0410441 0.0367775
0.3 0.0343142 0.0343147 0.0340402 0.0355452 0.0318502
0.2 0.0280173 0.0280179 0.0277937 0.0290226 0.0260056
0.1 0.0198111 0.0198116 0.0196531 0.0205221 0.0183887
1.1x10−6 0.0000626 0.0000626 0.0000652 0.0000681 0.0000610

Table 2 show the temperature convergence, varying the number of eigenvalues up to 120 eigenvalues, obtaining con-
vergence in the fourth decimal place. To validate the model, we compared it with results obtained by Naveira (2006) and
by the Blasius solution showing good agreement.

Table 2. Convergence behavior of temperature distribution for different truncation orders, at y = 1 , x = 0.01 , 0.25 ,
0.50 , 0.75 and 0.1 mm ; and comparing the results obtained with Naveira (2006) and Blasius solution.

Autovalores X=0.01mm X=0.25mm X=0.50mm X=0.075mm X=0.1mm
10 23.6883 25.8318 28.2473 30.1009 31.6635
20 23.7036 25.8558 28.2814 30.1426 31.7117
40 23.7111 25.8678 28.2984 30.1634 31.7357
60 23.7137 25.8718 28.3040 30.1703 31.7437
80 23.7149 25.8738 28.3068 30.1738 31.7477
90 23.7154 25.8745 28.3078 30.1750 31.7490
100 23.7156 25.8750 28.3085 30.1758 31.7500
110 23.7159 25.8754 28.3091 30.1766 31.7509
120 23.7162 25.8758 28.3096 30.1772 31.7516
Naveira (2006) 23.7178 25.8717 28.3008 30.1652 31.7370
Blasius 23.7343 25.9044 28.3501 30.2267 31.8088

5. CONCLUSIONS

The present work was concerned with the solutions and physical interpretation of a steady-state conjugated conduction
external convection and hydrodynamic problems, for laminar flow over a flat plate of non-negligible thickness. The
solution for the determination of thermal and hydrodynamic boundary thickness allows the obtaining of results, that
can be used the engineering level. The most important contribution of the research was to be able to determine the
thickness of the hydrodynamic boundary layer without having to consider the Blasius hypothesis (similarity method) and
the hydrodynamic and thermal problems was solved simultaneously. The results obtained in the determination of the
hydrodynamic boundary layer thickness compared with the results of the exact solution were very close with an error of
less than 1% , this corroborates for the validation of the proposed model, in addition we compared with the polynomial
Karman-Pohlhausen approximations with third and fifth order (Eyo et al., 2012) showing that these approximations cause
a greater deviation from the exact analytical solution. The results obtained in the thermal field were also very satisfactory
when compared with the results found in Naveira (2006).
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