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Abstract. The constant progress of constructive techniques and civil construction materials, coupled with technological 

advancement, especially in the field of computational simulations, has allowed the design of increasingly tall and 

slender structures. These structures presents high flexibility and therefore are vulnerable to dynamic loads actions, 

such as earthquakes, winds and even occupation by human users or machines. Due to this flexibility, these structures 

commonly suffer from excessive vibration, which can cause users discomfort or compromise the building safety. A 

passive vibration control system can be resumed as one or more devices that absorbs a portion of the energy 

transmitted by external loads. One of these devices is the tuned mass damper (TMD), which transfers energy between 

the main structure and an auxiliary mass. One of the most used Tuned Mass Dampers in building structures are the 

conventional pendulum types, but they have the inconvenience of requiring a lot of internal space inside the building. 

In this work a ten-storey shear-building model is analyzed by reducing it to a single degree of freedom system in order 

to present a preliminary set of design parameters for an Inverted Pendulum Tuned Mass Damper (IPTMD), which can 

be used to protect dynamically loaded structures against undesirable vibration levels. 
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1. INTRODUCTION  

 

The structural control is a technique that promotes a change on the stiffness and damping properties of a structure. It 

can be classified as passive, active, hybrid or semi-active (Soong & Dargush, 1997). A passive control system can be 

resumed as the installation of one or more devices at the main structure in order to absorb a portion of the energy 

transmitted by external dynamic loads (Avila, 2002 and Deraemaeker et al., 2016).  

One typical passive control device is the Tuned Mass Damper (TMD), which transfers energy between the main 

structure and an auxiliary mass. It is possible to design a tuned mass damper (TMD) by the simplified analysis of the 

structure as a discrete model. The TMD attached to the main structure needs to be tuned to a particular frequency in 

order to make it vibrate out of phase with the main system, absorbing energy from the structure and minimizing the 

main system’s vibration. Thus, when optimally tuned to the resonant mode of interest, a TMD commonly is effective in 

reducing the dynamic response of the structure. 

A TMD may be designed with a pendulum geometry. The most used Pendulum TMD’s in building structures are 

conventional pendulums, but they have the inconvenience of, sometimes, require a lot of internal space in the building. 

Therefore, the inverted pendulum becomes an adequate alternative (Guimarães, 2016). On the other hand, according to 

Anh et al. (2007), to study and design an inverted-pendulum system is a big challenge compared to conventional 

pendulum-type ones, as the first can be stable or unstable while the latter is mostly stable. 

In this work, a ten-storey shear-building model is analyzed. It is reduced to a single degree of freedom system, in 

order to determine a set of design parameters for an Inverted Pendulum Tuned Mass Damper (IPTMD). 

 

2. REDUCED SCALE PHYSICAL MODEL 
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To simulate the behavior of a tall building, the parameters and characteristics of a reduced scale physical model was 

used. This model consists of ten SAE 1020 steel modules, with Young’s Module equals to 2.05x1011 and specific 

weight equals to 7870 Kg/m³.  The modules are bolted one by one and each module is set by two plates connected by 

four columns. Plates and columns have both a thickness equals to 6,3 mm. The resulting structure is approximately tall 

212 centimeters, with an approximately slenderness ratio of 1:10. 

 

 
 

Figure 1. Steel Module used to assemble the physical model (a) and module dimensions (mm) (b) 

 

 
 

Figure 2. Resulting structure assembled 

 

 

3. SHEAR FRAME MODEL 

 

In order to perform the necessary analysis, the physical model was analyzed as a ten-storey shear frame, shown in 

Figure 3. The shear frame model is a simplification that assumes that all of the building mass is lumped at the floor 

levels, that the floor beams have infinite stiffness and not considering columns axial effect. Together, these assumptions 

allow to assume that the displacements at each floor may be described by one single translational degree of freedom. 

Thus, only ten degrees of freedom are needed to describe the displacements of the structure. 

The mass of each floor was considered as the mass of the plates on that level, plus the mass of bolts and nuts, 

subtracting the mass relative to the holes. The stiffness of each floor was assumed to be the sum of all columns stiffness 

in the considered direction. The stiffness of each column, assumed to be fixed at both joints, is  
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where E is the Young’s Modulus of material and I is the cross section’s Moment of Inertia at the considered direction.  
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Figure 3. Ten degrees of freedom shear frame 

 

  The properties of mass and stiffness of the structure and the resulting natural frequencies are shown in Tables 1 and 

2, respectively. The first five modal shapes are illustrated in Figure 4. 

 

Table 1. Stiffness and Mass Properties of the structure. 

 

n 
Stiffness kn 

(N/m) 

Mass mn 

(Kg) 

1 500901.8720 5.9827 

2 592060.4851 6.0086 

3 513323.2916 6.0455 

4 510294.3134 6.0225 

5 502349.2988 6.0224 

6 477039.3438 5.9779 

7 507729.2016 5.9794 

8 481335.9660 6.0016 

9 540480.7883 5.9679 

10 510765.8977 2.9235 
                            

 

Table 2. Natural Frequencies. 

 

Mode 
Natural Frequency 

(Hz) 

1 7.3488 

2 21.6324 

3 35.4883 

4 48.4065 

5 60.6354 

6 70.4973 

7 79.7474 

8 86.3231 

9 91.2525 

10 92.7778 
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Figure 4. First five modal shapes of the considered shear frame 

 

4. REDUCTION TO A SINGLE DEGREE OF FREEDOM SYSTEM 

 

The equations of motion of the system is:  

 

)(F)(K)(C)(M ttytyty    (2) 

 

Where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F(t) is the dynamic load vector and y(t) 

is the displacement vector of the structure. 

The structural response for systems with many degrees of freedom such as tall buildings, can be obtained through a 

reduced model using modal analysis (Soong and Dargush, 1997). 

Then, we can approximate the dynamic response vector y(t), representing it by a single coordinate yN and a single 

mode ϕ1   

 

)(1 tyy N   (3) 

 

Substituting equation (3) into equation (2) and pre-multiplying (2) by Φ1
T the equation of movement (2) becomes: 

 

)()()()( 111 tFtyKtyCtyM NNN    (4) 

 

where M1 = Φ1
TMΦ1 is the modal mass, C1=M12ξ1ω1

2 , K1=M1ω1
2.; ξ1 and ω1 are the damping ratio and the natural 

frequency of the mode. It can be seen that the system with many degrees of freedom is reduced to an equivalent single 

degree of freedom system, except for the fact that mass, stiffness and modal damping are used instead of the real 

physical parameters. 

With this modal reduction technique and considering ξ1=0.02, the equivalent single degree of freedom model 

properties are given: M1 = 29.5044 Kg; K1 = 6.2905x104 N/m and C1 = 54.4936 Ns/m. 

 

 

5. IPTMD DESIGN 

 

The reduced single degree of freedom with an IPTMD attached is shown in Fig.5. To design IPTMD parameters 

initially, the damping of the main system is set to zero to use the classical optimal expressions for the system parameters 

presented by Den Hartog (1956), considering the structure as undamped and subjected to an harmonic excitation: 
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1MM d    (7) 

 

Then the parameters can be calculated by 

1 d
 (8) 
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dddd MC   2                                                                                                                                                            (10) 
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where μ is the mass ratio, α is the optimal frequency ratio and ξd is the damping ratio of the damper.  

The mass ratio μ is commonly assumed between 0.05 and 0.1. According to Oliveira (2012), increasing the mass 

ratio of the optimized damper, the peak response value tends to be reduced to an asymptotic value. Adopting μ = 0.1 it 

is possible to have a good design parameter for different damping ratios of the structure. The following values were 

found: Md = 2.9504 Kg; ωd = 41.9765 rad/s (6.6808 Hz); ξd = 0.1846; Kd = 5.1988x103 N/m and Cd = 45.7343 Ns/m. 

 

 

 
 

Figure 5. Two degree of freedom main system with IPTMD 

 

Through the equation (11), that describes the natural frequency of the inverted pendulum damper, it is possible to 

find the optimum length of the rigid bar, setting a value for linear density. 
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Considering ρ=0.5423, which is the linear density value of an aluminum bar with a diameter of 16 millimeters, the 

optimum length obtained is L=0.97 m. 

 

6. RESPONSE OF CONTROLLED SYSTEM 

 

The equations of motion of the damped two degree of freedom of Fig. 5 considering small displacements in the 

pendulum, when M1 is subjected to an harmonic force F(t), are described in the matrix form in (12). 
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Where M1, K1 e C1 are the modal mass, stiffness and damping coefficient. Md, Kd e Cd are the IPTMD’s mass, 

stiffness and damping coefficient. ρ and L are the pendulum bar’s linear density and length. By making F(t)=eiωt, 

u(t)=Hu(ω)eiωt and θ(t)= Hθ(ω)eiωt  and replacing in equation (12), it can be obtained: 
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Solving the linear system, it is possible to obtain the response functions in the frequency domain Hu(ω) and Hθ(ω):  
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where  
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where  
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Finally, the frequency response function of the structure, with the IPTMD attached is illustrated in Figure 6, where 

the comparison between the structure with and without control is presented. It can be observed that there is a great 

reduction on the main system response with the attachment of the IPTMD. The set of parameters defined from Den 

Hartog’s optimal equations was responsible for the reduction in response by more than 85%, although these equations 

were defined for a mass-spring system, which has a behavior significantly different from a pendulum damper. 

 It is known that the response of the system is substantially dependent on the length of the pendulum. From the 

optimal equations and the values found for Md, Kd, µ and ωd, as well as the value set for ρ, the required pendulum 

length was found L=97 cm and the presented response is for this value. However, a pendulum of this length may be 

difficult to construct, taking into account the overall height of the structure and the possible buckling and flexing effects 

of the bar. 
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Figure 6. Frequency response of the main system with and without control  

 

7. CONCLUSIONS 

 

This work presents a preliminary design study to set parameters values for an IPTMD. A small scale physical model 

was considered and it was simplified to a ten storey shear frame. Then the system was reduced to single degree of 

freedom. Considering the damping of the structure equals to zero, it was possible to use Den Hartog’s expressions 

deduced to a traditional tuned mass damper. Since the damping level in building structures is generally low it showed to 

be a good preliminary approximation leading to a very good response reduction. This study will be the basis to the 

design of an IPTMD for the small scale physical model. 
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