

XXXI Congresso Nacional de Estudantes de Engenharia Mecânica 29 de Setembro a 03 de Outubro de 2025, São Carlos - SP, Brasil

INSTRUMENTAÇÃO DE BAIXO CUSTO PARA COLETA DE DADOS FLUIDOTÉRMICOS DE UMA CHAMINÉ SOLAR EM BOM JESUS DA LAPA-BA

Helber Alencar de Vasconcelos, helber.v9431@ufob.edu.br¹ André Issao Sato, andre.sato@ufob.edu.br¹

¹Universidade Federal do Oeste da Bahia, Centro Multidisciplinar de Bom Jesus da Lapa, Av. Manoel Novaes, n. 1064, Bairro Centro.

Resumo. Este trabalho apresenta a construção e instrumentação de uma chaminé solar experimental com o objetivo de analisar seu desempenho térmico e fluidodinâmico, utilizando dispositivos eletrônicos de baixo custo. A estrutura da chaminé foi desenvolvida com materiais acessíveis, e o sistema foi monitorado por meio de sensores digitais de temperatura (DS18B20 e DHT22), além de um anemômetro de baixo custo construído e calibrado em túnel de vento. A integração dos sensores a um microcontrolador ESP32 permitiu a coleta automatizada dos dados, possibilitando o acompanhamento em tempo real das variações térmicas e da velocidade do ar no interior da chaminé.

Palavras chave: Chaminé solar. Convecção natural. Modelo experimental. Instrumentação.

Abstract. This work presents the construction and instrumentation of an experimental solar chimney with the aim of analyzing its thermal and fluid dynamic performance, using low-cost electronic devices. The chimney structure was developed with accessible materials, and the system was monitored by means of digital temperature sensors (DS18B20 and DHT22), in addition to a low-cost anemometer built and calibrated in a wind tunnel. The integration of the sensors with an ESP32 microcontroller allowed automated data collection, enabling real-time monitoring of thermal variations and air speed inside the chimney.

Keywords: Solar chimney. Natural convection. Experimental model. Instrumentation.

1. INTRODUÇÃO

Há pouco tempo, as pessoas passavam a maior parte do dia ao ar livre, essa realidade tem se alterado de forma expressiva nos últimos anos, impulsionada por transformações sociais, inovações tecnológicas e mudanças culturais, contribuindo para que a maioria da população passe mais tempo em ambientes fechados, aumentando o uso de resfriamento mecânico e consequentemente impactando o consumo energético. No setor residencial, segundo a Nota Técnica 30 de 2018 (EPE, 2018), estima-se que a posse de ar-condicionado tenha mais que duplicado entre os anos de 2005 e 2017, podendo gerar uma demanda de 48 TWh até 2035. Portanto, há uma grande necessidade de reduzir o consumo de energia proveniente do uso da ventilação forçada, sendo por melhorias na eficiência dos aparelhos, ou com a implantação de métodos provenientes da ventilação natural.

O resfriamento passivo desempenha um papel fundamental na criação de ambientes termicamente confortáveis, proporcionando ventilação natural em espaços confinados e contribuindo para o bem-estar dos indivíduos. Estudos como os de Ho et al. (2009) afirmam que velocidades do ar desenvolvidas naturalmente podem remover o calor sensível e latente do corpo, promovendo uma diminuição da temperatura corporal para uma faixa confortável. As chaminés solares representam uma solução eficiente e sustentável para melhorar a ventilação natural em edificações, utilizando a energia térmica do sol para induzir o movimento do ar. De acordo com Abdeen et al. (2019), o movimento do ar proporcionado pela chaminé solar aumenta o conforto térmico, podendo reduzir drasticamente o consumo de energia e os efeitos ambientais.

Chaminé solar consiste em um canal de ar simples, sendo uma superfície translúcida utilizada para admitir a passagem dos raios solares e outra superfície absorvedora responsável por reter os raios solares e dissipar a energia absorvida para o fluido por meio da convecção, promovendo uma força motriz ascendente devido a flutuabilidade térmica. Consequentemente, o ar quente flui para fora da chaminé, permitindo a admissão de um ar fresco vindo do exterior para o ambiente devido a frestas como portas e janelas.

Miyazaki et al. (2006) demonstrou no seu estudo que a taxa de fluxo mássico era maior devido ao aumento do fluxo de calor e a diminuição da temperatura ambiente. Em estudo ele demonstra que ao variar a temperatura ambiente de -10 °C para 40 °C a taxa de fluxo mássico diminuiu cerca de 16%, sendo necessário prestar atenção na diferença da

temperatura da placa absorvedora em relação a temperatura ambiente. No referido artigo cita que devido a melhoria do isolamento da parede interna da chaminé, há um notável aumento do fluxo de massa, portanto um melhor isolamento proporciona uma maior vazão mássica. Miyazaki aprofundou o seu estudo em relação a comparação do uso da chaminé solar combinada a ventilação forçada, e constatou que houve uma redução de até 90% da potência do eixo do ventilador nos meses de janeiro e fevereiro, utilizando uma chaminé de 1m de largura, promovendo assim uma redução energética de 51% ao longo do ano.

Abdeen et al. (2019) destacaram que os parâmetros geométricos da chaminé solar, como altura, largura, ângulo de inclinação e espaçamento de canais, são cruciais para o seu desempenho. Villar-Ramos et al. (2020) observou que ao aumentar a cavidade de entreferro a temperatura do ar diminui, porém o fluxo de massa aumenta, concluindo que a maior ventilação advém de uma maior abertura entre a superfície absorvedora e a translúcida. Imran et al. (2015) encontrou uma maior velocidade ao utilizar um ângulo de inclinação de 60° e uma melhor vazão volumétrica ao utilizar a mesma inclinação com valor de entreferro de 150 mm. A partir do estudo realizado por Jesus (2022), os parâmetros dos ângulos de inclinação e distância do entreferro foram determinados de acordo com a latitude do local do presente trabalho.

Este trabalho tem como objetivo a construção experimental de uma chaminé solar e a instrumentação de sensores digitais e a construção de um anemômetro de baixo custo para monitoramento térmico e fluidodinâmico, a fim de analisar o funcionamento do sistema com base no princípio da convecção natural.

2. METODOLOGIA

Neste trabalho, foi projetado, construído e instrumentado uma chaminé solar com o objetivo de promover ventilação passiva por meio da convecção natural. A estrutura da chaminé possui dimensões de 1000 mm de altura, 500 mm de largura e 150 mm de profundidade, com uma inclinação de 50° em relação ao solo. Para sua construção, foram utilizadas cantoneiras metálicas de 7/8" e barras chatas de 5/8", ambas com espessura de 1/8", formando a estrutura de sustentação.

Figura 1 - a) Estrutura com as laterais finalizadas e b) Ênfase na coifa finalizada com o anemômetro posicionado (Autores, 2025)

As paredes laterais foram confeccionadas em chapas de MDF, e na base interna foi fixada uma chapa metálica de 1000 mm por 500 mm, com espessura de 2 mm, pintada na cor preta a fim de maximizar a absorção da radiação solar. Na parte superior da estrutura, foi instalado um vidro translúcido com 3 mm de espessura, permitindo a entrada da radiação solar e, ao mesmo tempo, reduzindo as perdas térmicas por convecção com o meio externo. Para direcionar adequadamente o fluxo de ar gerado, foi desenvolvida uma coifa na saída superior da chaminé, concentrando o escoamento em um único ponto onde foi posicionado o anemômetro, facilitando a obtenção dos dados de velocidade do ar. Toda a estrutura foi isolada termicamente com tecido de fibra cerâmica, sobre o qual foi aplicada uma camada de fita refletiva, com o objetivo de minimizar a transferência de calor para as laterais e refletir parte da radiação solar indesejada.

A instrumentação da chaminé foi desenvolvida para permitir o monitoramento contínuo das variáveis térmicas e de escoamento. Foram instalados oito sensores de temperatura do tipo DS18B20, com faixa de operação entre -10 °C e +80 °C e precisão de $\pm 0,5$ °C. Desses, seis foram fixados na superfície da chapa metálica absorvedora e dois na superfície interna do vidro, permitindo acompanhar o gradiente térmico ao longo da estrutura, conforme a Fig. 2. Os sensores operam em um barramento digital único, sendo identificados por seus respectivos endereços lógicos programados no microcontrolador. Adicionalmente, foram utilizados dois sensores DHT22 para medição da temperatura e da umidade relativa do ar, com faixa de medição entre -40 °C e +80 °C e precisão de $\pm 0,5$ °C para temperatura e entre 0% e 100% para umidade, com precisão de 2-5%. Esses sensores foram posicionados estrategicamente nas regiões de entrada e saída do ar na chaminé.

Figura 2 - a) Sensores de temperatura Ds18b20 posicionados na placa absorvedora e b) Sensores Ds18b20 posicionados no vidro (Autores, 2025)

Para a medição da velocidade do ar, foi construído um anemômetro de baixo custo, com base em um modelo proposto por Silva. et. al. (2024) em trabalho anterior. O dispositivo foi desenvolvido a partir da modificação de um cooler de computador. A adaptação consistiu na instalação de um sensor Hall e de um ímã de neodímio, permitindo a detecção da frequência e rotação das hélices. O sistema de aquisição de dados foi comandado por um microcontrolador ESP32, escolhido por sua conectividade Wi-Fi integrada, o que possibilitou a transmissão dos dados coletados em tempo real, a cada 10 segundos, para uma planilha do Google Sheets. A comunicação foi estabelecida via protocolo HTTPS por meio de um script desenvolvido na plataforma Google Apps Script. As bibliotecas utilizadas para o código do ESP32 foram WiFiManager.h e WiFiClientSecure.h, disponíveis no Arduino IDE.

```
function doGet(e) {
// Define um valor inicial para 'result' indicando sucesso
var result = 'Ok';
  Verifica se não há parâmetros definidos
if (e.parameter == 'undefined') {
 result = 'No Parameters';
} else {
  // ID da planilha que será acessada (precisa ser configurado com o ID correto)
 var sheet_id = '1171NXQO4iA4G3Xs_';
 // Abre a planilha pelo ID e seleciona a aba ativa
 var sheet = SpreadsheetApp.openById(sheet id).getActiveSheet();
 var newRow = sheet.getLastRow() + 1;
 var rowData = [];
 var d = new Date();
 rowData[0] = d;
  rowData[1] = d.toLocaleTimeString();
  for (var param in e.parameter) {
   var value = stripQuotes(e.parameter[param]);
   switch (param) {
      case 'temperatura1':
       rowData[2] = value; // Coluna C
       result = 'Written on column C';
       break:
  var newRange = sheet.getRange(newRow, 1, 1, rowData.length);
 newRange.setValues([rowData]);
return ContentService.createTextOutput(result);
function stripOuotes(value) {
 return value.replace(/^["']|['"]\$/g, "");
```

Figura 3 - Código utilizado no Sheets para receber os dados em tempo real para planilha (Autores, 2025)

```
String GAS ID = "AKfycbzif3w- "; // ID do Google Apps Script
const char* host = "script.google.com"; // Host do Google Apps Script
// Função para conectar o ESP32 à rede Wi-Fi
void conexaoWiFi() {
  // Verifica se o ESP32 já está conectado à rede Wi-Fi
  if (WiFi.status() != WL_CONNECTED) {
    WiFiManager wm; // Cria um objeto WiFiManager para gerenciar a conexão
    wm.setConfigPortalTimeout(30); // Timeout de 30 segundos para configuração do Wi-Fi
    wm.autoConnect("NAME", "SENHA"); // Cria um ponto de acesso para configurar a rede Wi-
    // Verifica se a conexão foi bem-sucedida
    if (WiFi.status() != WL CONNECTED) {
      Serial.println("Falha ao conectar ao Wi-Fi. Continuando sem conexão.");
    } else {
     Serial.println("Conectado ao Wi-Fi.");
  }
// Função para enviar dados para o Google Sheets
void update_google_sheet() {
  if (WiFi.status() == WL CONNECTED) { // Verifica se está conectado à rede Wi-Fi
    WiFiClientSecure client;
    client.setInsecure(); // Desabilita a verificação de certificado SSL (necessário para o
Google)
    if (client.connect(host, 443)) { // Conecta ao Google Apps Script via HTTPS (porta 443)
      String url = "/macros/s/" + GAS ID + "/exec?"; // URL para o Google Apps Script
      url += "&umidade1=" + String(umidade1); // Exemplo de parâmetro
      // Envia uma requisição GET com os dados para o Google Apps Script
      client.print(String("GET ") + url + " HTTP/1.1\r\nHost: " + host + "\r\nConnection:
close\r\n\r\n");
     client.stop(); // Fecha a conexão com o servidor
  } else {
    Serial.println("Sem conexão Wi-Fi. Dados não enviados.");
void setup() {
  Serial.begin(115200); // Inicia a comunicação serial
  conexaoWiFi(); // Conecta ao Wi-Fi
void loop() {
  update google sheet(); // Envia dados para o Google Sheets
  delay(10000); // Atraso de 10 segundos entre as requisições
```

Figura 4 - Código utilizado no ESP32 para conexão WiFi (Autores, 2025)

A calibração dos sensores foi realizada com o intuito de garantir a confiabilidade dos dados obtidos. Os sensores DS18B20 foram calibrados a partir de um termômetro de mercúrio padrão, com medições realizadas em pontos de temperatura entre 1,5 °C e 99 °C. A calibração foi realizada utilizando o software Microsoft Excel, por meio do qual foram obtidas curvas de tendência individualizadas para cada sensor. Posteriormente, os parâmetros dessas curvas foram inseridos no código de leitura dos sensores, a fim de aplicar as correções correspondentes.

Figura 5 - Calibração dos sensores Dallas DS18B20 (Autores, 2025)

Os sensores DHT22, por sua vez, foram comparados a um termo-higrômetro portátil TTH100, cuja faixa de medição varia de -9.9 °C a 70 °C para temperatura, com precisão de ± 0.5 °C, e de 0% a 100% para umidade relativa. Foram realizadas 17 medições, com intervalo de 4 minutos entre elas. A calibração dos sensores foi efetuada com base na diferença entre os valores medidos pelo instrumento de referência e aqueles registrados pelos sensores DHT22. A média dessas diferenças foi então utilizada como fator de correção para calibração.

Figura 6 - a) Sensores DHT22 localizados no mesmo espaço do termo-higrômetro TTH100 e b) Vista ampla do espaço de calibração e microcontrolador (Autores, 2025)

A calibração do anemômetro foi conduzida em túnel de vento, por meio da comparação com um anemômetro industrial modelo MDA-01, cuja faixa de medição é de 1 a 30 m/s, com erro de ±5% da leitura acrescido de 0,5 dígitos. Foram realizadas medições tanto em regime crescente quanto decrescente de frequência, abrangendo o intervalo de 7,55 Hz a 45 Hz.

Figura 7 - Controlador de frequência do túnel de vento (Autores, 2025)

Figura 8 - Sistema para obtenção das velocidades, coletados com o anemômetro industrial e de baixo custo (Autores, 2025)

A chaminé solar foi instalada no pátio da Universidade Federal do Oeste da Bahia, campus Bom Jesus da Lapa. O posicionamento foi feito com orientação ao norte geográfico, em uma área livre de obstáculos que pudessem gerar sombreamento, garantindo, assim, o máximo aproveitamento da radiação solar incidente durante os períodos de coleta de dados.

Figura 9 - Chaminé solar finalizada e coletando dados (Autores, 2025)

3. RESULTADOS

Para a calibração do anemômetro, optou-se pela utilização de uma curva polinomial de quarto grau, a qual apresentou menor erro relativo em comparação à curva linear, especialmente para velocidades de até 2,5 m/s. O erro absoluto máximo observado foi de 0,37 m/s para a curva polinomial e de 0,51 m/s para a curva linear. Em termos de erro relativo, os valores foram de 17% para a curva polinomial e 45% para a curva linear.

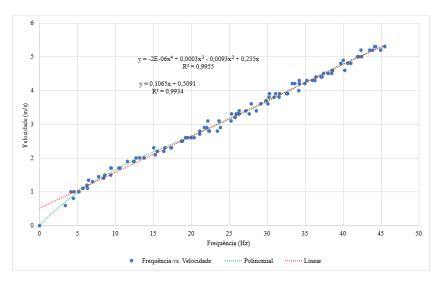


Figura 10 - Calibração do anemômetro

Com relação aos sensores de temperatura Dallas DS18B20, foram ajustadas curvas de calibração individuais. Os erros relativos mínimos observados foram de 0% para todos os sensores, enquanto os erros máximos encontram-se apresentados na Tab. 1.

Tabela 1 - Erros relativos e absolutos encontrados na calibração dos DS18B20 (Autores, 2025)

Dallas DS18B20	Sensor 1	Sensor 2	Sensor 3	Sensor 4	Sensor 5	Sensor 6	Sensor 7	Sensor 8
Erro relativo máximo	2%	2%	3%	2%	2%	4%	2%	1%
Erro absoluto máximo	1,47	1,75	1,46	1,48	1,74	3,71	2,01	0,92

Para os sensores DHT22 de temperatura e umidade do ar, foram encontrados erros absolutos consideravelmente baixos, no qual os máximos foram organizados na Tab. 2.

DHT	Temperatura 1	Umidade 1	Temperatura 2	Umidade 2
Erro relativo máximo	0%	1%	0%	1%
Erro absoluto	0.12	0.52	0.11	0.44

Tabela 2 - Erros relativos e absolutos encontrados na calibração dos DHT22 (Autores, 2025)

Os dados foram coletados entre os dias 17 e 24 de fevereiro de 2025, no período das 8h às 18h. A análise revelou uma consistência significativa nas velocidades médias ao longo dos dias observados, com o dia 24 de fevereiro de 2025 destacando-se, apresentando a maior velocidade média, de 1,2758 m/s, no intervalo das 14h às 15h. Além disso, o dia 20 de fevereiro de 2025 também registrou uma velocidade média notável de 1,2732 m/s, entre 13h e 14h.

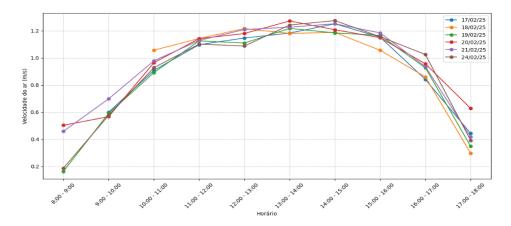


Figura 11 - Velocidade média do ar em relação aos horários dos dias analisados (Autores, 2025)

4. CONSIDERAÇÕES FINAIS

A construção e instrumentação de uma chaminé solar experimental permitiu não apenas validar o princípio da convecção natural, mas também evidenciar a eficácia de dispositivos de baixo custo aplicados ao monitoramento de desempenho térmico e fluidodinâmico. A utilização de sensores digitais DS18B20 e DHT22 mostrou-se adequada para o ambiente experimental, oferecendo medições consistentes e permitindo a caracterização térmica do sistema ao longo do dia.

O anemômetro desenvolvido, mesmo com uma estrutura simples e de baixo custo, apresentou resultados satisfatórios após a calibração, sendo capaz de registrar com precisão as variações na velocidade do escoamento induzido. A calibração em túnel de vento e o ajuste por curva polinomial garantiram maior confiabilidade nas medições, especialmente em baixos regimes de velocidade.

A integração dos sensores com a placa ESP32 proporcionou uma coleta de dados eficiente e contínua, facilitando o acompanhamento do desempenho da chaminé ao longo do tempo e permitindo análises mais detalhadas sobre o comportamento térmico e do fluxo de ar no sistema.

Dessa forma, o estudo reforça o potencial da chaminé solar como solução funcional e acessível, demonstrando que tecnologias simples, quando bem aplicadas, podem contribuir significativamente para o desenvolvimento de Sistemas eficientes e sustentáveis.

5. AGRADECIMENTOS

Os autores agradecem o apoio do Conselho Nacional de Desenvolvimento Científico e Tecnológico e da Universidade Federal do Oeste da Bahia.

6. REFERÊNCIAS

ABDEEN, Ahmed; SERAGELDIN, Ahmed A.; IBRAHIM, Mona G.e.; EL-ZAFARANY, Abbas; OOKAWARA, Shinichi; MURATA, Ryo. "Solar chimney optimization for enhancing thermal comfort in Egypt: an experimental and

- numerical study". Solar Energy, [S.L.], v. 180, p. 524-536, mar. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.solener.2019.01.063.
- EPE [Empresa de Pesquisa Energética]. "Uso de Ar Condicionado no Setor Residencial Brasileiro: Perspectivas e contribuições para o avanço em eficiência energética". EPE-DEA-NT-030/2018.
- HO, Son H.; ROSARIO, Luis; RAHMAN, Muhammad M. "Thermal comfort enhancement by using a ceiling fan". Applied Thermal Engineering, [S.l.], v. 29, n. 8–9, p. 1648–1656, 2009. ISSN 1359-4311. Disponível em: https://www.sciencedirect.com/science/article/pii/S1359431108003189.
- IMRAN, A. A.; JALIL, J. M.; AHMED, S. T. "Induced flow for ventilation and cooling by a solar chimney". Renewable Energy, v. 78, p. 236–244, 2015. DOI: 10.1016/j.renene.2015.01.019
- JESUS, Médson Santos de. "Estudo numérico do desempenho de chaminés solares aplicada a ventilação natural na cidade de bom jesus da lapa ba." Monografia Mestrado Engenharia Mecânica Universidade Federal do Oeste da Bahia. Bom Jesus da Lapa. 2022.
- MIYAZAKI, T. et al. "The influence of ambient temperature and internal wall insulation on airflow characteristics in a solar chimney". Energy and Buildings, v. 38, p. 1180–1187, 2006.
- SILVA, Kaelaine Carvalho da; SATO, André Issao; ALMEIDA, Tony; ALVES, Yuri Macedo. "Desenvolvimento e calibração de um anemômetro de baixo custo a partir de um ventilador de processador." In: CONGRESSO DE PESQUISA E ENSINO EM ENGENHARIA MECÂNICA CREEM, 2024, Salvador. Anais [...]. ABCM, 2024. DOI: https://doi.org/10.26678/ABCM.CREEM2024.CRE2024-0063.
- VILLAR-RAMOS, M.M; MACIAS-MELO, E.V.; AGUILAR-CASTRO, K.M.; HERNÁNDEZ-PÉREZ, I.; ARCE, J.; SERRANO-ARELLANO, J.; DÍAZ-HERNÁNDEZ, H.P.; LÓPEZ-MANRIQUE, L.M. "Parametric analysis of the thermal behavior of a single-channel solar chimney". Solar Energy, [S.L.], v. 209, p. 602-617, out. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.solener.2020.08.072.

7. RESPONSABILIDADE PELAS INFORMAÇÕES

Os autores são os únicos responsáveis pelas informações incluídas neste trabalho.