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Abstract. Fluctuating velocities and pressures at selected points of an oscillated laminar flow are recoded and processed 

to provide the statistical correlations of the transport equations for kinetic energy, helicity and enstrophy. The primitive 

variables solver uses UNIFAES discretization for the advective and viscous terms. Such scheme is generalized by making 

explicit the space derivatives employed in the solver, allowing its use in the calculation of the various correlations, in 

parallel with second order and forth order central differencing schemes. 
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1. INTRODUCTION 

 

The construction of a turbulence model based on fluctuating kinetic energy and helicity was proposed by Figueiredo 

(2018b). Helicity is the scalar product of velocity and vorticity. Such concept was formulated about 1960, with 

applications in meteorology and magneto-hydrodynamics (Moffatt and Tsinober, 1992). Fluctuations in helicity have 

been associated to turbulence cascade and vortex stretching in physics literature (Holm, 2007; Dallas and Tobias, 2016; 

Yan et al., 2020). However, helicity is absent from the literature on statistical models of turbulence for engineering. 

The primitive variables incompressible Navier-Stokes solver applies to three-dimensional flows, using UNIFAES 

scheme for the advective and viscous transport terms, semi-staggered mesh, Poisson equation for pressure with 

momentum interpolation, and forth order Runge-Kutta time-wise integration. Instantaneous velocity and pressure around 

selected nodes are recorded to be processed in the program for the statistical correlations of the transport equations for 

kinetic energy, helicity and enstrophy. Testing of the statistics program used an oscillated laminar flow, which can be 

analyzed with modest refinement levels allowed by a personal computer.  

Initial results concerning this proposal (Figueiredo, 2020) are revised, an important error on the helicity transport 

equation is corrected, and, particularly, coherence between the numerical methods of the Navier-Stokes solver and those 

of the statistical correlations is improved through a generalization of UNIFAES which turned explicit its first and second 

derivatives, so that the correlations can be calculated with the same interpolating curve of the solver. 

 

2. GENERALIZED UNIFAES SCHEME 

 

UNIFAES computes the combined advective and diffusive terms without requiring its first and second derivatives, 

which are made explicit here. This work is restricted to regularly spaced Cartesian meshes, although UNIFAES admits 

irregularly spaced meshes without loss of second order convergence, with adequate refinement route (Llagostera and 

Figueiredo, 2000a, 2000b). 

UNIFAES applies to the divergence form advective term and diffusive term of the transport equation of a transported 

variable Φ on a velocity field 𝒰𝑖: 

 

     
𝜕Φ

𝜕𝑡
+

𝜕𝒰𝑖Φ

𝜕𝑥𝑖
− 𝜈

𝜕2Φ

𝜕𝑥𝑖𝜕𝑥𝑖
= 𝑆      (1) 

 

Here, 𝜈 is the diffusivity of the transported variable and 𝑆 is a possible source term. Summation over the three 

coordinate directions is assumed for each repeated index in a term. 

The Finite Volume analogue of the net advective and diffusive flux 𝜕𝐽1 𝜕𝑥1⁄  is: 

 

     
𝜕𝐽1

𝜕𝑥1
≅

𝐽𝑒−𝐽𝑤

∆𝑥1
=

1

∆𝑥1∆𝑥2∆𝑥3
∫ ∫ ∫ (

𝜕𝒰Φ

𝜕𝑥1
− 𝜐

𝜕2Φ

𝜕𝑥1
2
) 𝑑𝑥1

𝑥1𝑒

𝑥1𝑤

𝑥2𝑛

𝑥2𝑠

𝑥3𝑢

𝑥3𝑑
𝑑𝑥2𝑑𝑥3 ≅

1

∆𝑥1
[𝒰𝑒Φe − 𝜐

𝜕Φ

𝜕𝑥1𝑒
− 𝒰𝑤Φw + 𝜐

𝜕Φ

𝜕𝑥1𝑤
]         (2)   
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Division by cell volume is used above to restore the physical dimension of the original equation, as convenient for 

expressing derivatives. Exponential-type schemes employ interpolating curves obtained as exact solutions of the one-

dimensional linear equation:  

 

     𝒰
𝑑Φ

𝑑𝑥
− 𝜈

𝑑2Φ

𝑑𝑥2 = 𝐾                     (3) 

 

Equation (3) approximates transport equation (1) considering the velocity component 𝒰 in direction 𝑥 to be locally 

constant, as well as term 𝐾, which represents all other terms of the equation (1), namely cross flow transport, source and 

transient terms. The resulting interpolation curve is: 

 

     Φ = 𝐶1 + 𝐶2𝑒𝑥𝑝 (
𝒰.𝑥

𝜈
) +

𝐾

𝒰
𝑥                          (4)      

 

The Finite Volume Exponential-type schemes employ the interpolating curve (4) to determine the flux through cell 

face e, for instance, using reference properties at such face. Curve (4) is fit to nodes P e E, with origin at node P, yielding: 

 

     𝐶2 =
ΦE−ΦP−

𝐾𝑒
𝑢𝑒

∆𝑥

𝑒𝑥𝑝(
𝒰e∆𝑥

𝜈
)−1

 (5) 

 

     𝐶1 = ΦP − 𝐶2   (6) 

 

    Deriving  Φ(𝑥) from Equation (3) : 

 

     
𝑑Φ

𝑑𝑥
= 𝐶2

𝒰

𝜈
𝑒𝑥𝑝 (

𝒰.𝑥

𝜈
) +

𝐾

𝒰
          (7) 

 

Profile (4) and its derivative (7) are then employed to compute the advective – diffusive flux. At cell face e it results, 

in terms of the cell face Peclet number 𝑝𝑒 = 𝒰𝑒∆𝑥1 𝜈⁄ : 

 

     𝐽𝑒 = 𝒰𝑒Φe − 𝜈
𝜕Φ

𝜕𝑥 𝑒
=  𝒰𝑒𝐶1 + 𝐾 (𝑥𝑒 −

𝜈

𝒰𝑒
) = (Φ𝑃 − Φ𝐸)𝜈

𝜋(𝑝𝑒)

∆𝑥1
+ 𝐾𝑒 [

𝜋(𝑝𝑒/𝑤)−1

𝑝𝑒/𝑤
+

1

2
] + 𝒰𝑒Φ𝑃  (8)  

     

Proceeding analogously for the west side and substituting into (2), the combined advective-diffusive net flux through 

east and west faces is:  

 

     
𝐽𝑒−𝐽𝑤

∆𝑥1
≅

1

∆𝑥1
[𝜈

𝜋(𝑝𝑒)

∆𝑥1
(Φ𝑃 − Φ𝐸) + 𝜈

𝜋(𝑝𝑤)

∆𝑥1
(Φ𝑃 − Φ𝑊) + Ψ + (𝒰𝑒 − 𝒰𝑤)Φ𝑃]                                                 (9) 

 

     𝜋(𝑝𝑒/𝑤) =
𝑝𝑒/𝑤

𝑒𝑥𝑝(𝑝𝑒/𝑤)−1
                                                       (10) 

 

     Ψ = 𝐾𝑒χ(𝑝𝑒) − 𝐾𝑤χ(𝑝𝑤)                                          (11) 

 

     𝜒(𝑝𝑒/𝑤) =
𝜋(𝑝𝑒/𝑤)−1

𝑝𝑒/𝑤
+

1

2
                                        (12) 

 

Term (𝒰𝑒 − 𝒰𝑤)Φ𝑃 ∆𝑥1⁄  and its analogues for other directions vanish due to continuity.  

Terms 𝐾 are determined in UNIFAES by Allen and Southwell´s (1955) Exponential scheme. Unknowns 𝐶1, 𝐶2 and 

𝐾𝑃 𝒰𝑃⁄  of curve (4) are fit to the nodes W, P and E, using properties of node P, forming a system that can be solved for 

𝐾𝑃 in terms of cell Peclet number  𝑝𝑃 = 𝒰𝑃∆𝑥/𝜐: 

 

     𝐾𝑃 = (Φ𝑃 − Φ𝐸)
𝜋(𝑝𝑃)

∆𝑥2 + (Φ𝑃 − Φ𝑊)
𝜋(−𝑝𝑃)

∆𝑥2                                                        (13) 

 

     𝜋(𝑝𝑃) =
𝑝𝑃

𝑒𝑥𝑝(𝑝𝑃)−1
                                          (14) 

 

UNIFAES determines 𝐾𝑒 by interpolating between the estimates of 𝐾𝑃, Eq. (13), and analogous for 𝐾𝐸 . If node E is 

located at a wall, 𝐾𝑒 is obtained by extrapolation from  𝐾𝑃  and  𝐾𝑊.  

The Finite Volume analogues of the first and second derivatives in direction 𝑥1 are obtained by integration on the cell 

volume using the divergence theorem: 
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1

∆x1
∫

𝜕Φ

𝜕𝑥1
𝑑𝑥1 = 

Φe−Φw

∆x1
  

𝑥1𝑒

𝑥1𝑤
                                             (15) 

 

     
1

∆x1
∫

𝜕2Φ

𝜕𝑥1
2 𝑑𝑥1 =

𝑥1𝑒

𝑥1𝑤
(

𝜕Φ

𝜕𝑥1𝑒
−

𝜕Φ

𝜕𝑥1𝑤
)

1

∆x1
                                                       (16)   

 

From the interpolating curve (4), using constants (5) and (6), one obtains for the cell face e: 

 

     Φe = ΦP +
ΦE−ΦP−

𝐾𝑒
𝑢𝑒

∆𝑥

𝑒𝑥𝑝(𝑝e)−1
[𝑒𝑥𝑝(𝑝e/2) − 1] +

𝐾𝑒

𝑢𝑒

∆𝑥

2
                                                       (17) 

 

Proceeding analogously for the west side, one gets UNIFAES first derivative: 

 

     
Φe−Φw

∆x1
=

(ΦE−ΦP)Θ(𝑝𝑒)− (ΦW−ΦP)Θ(−𝑝𝑤)

∆x1
+

𝐾𝑒

𝜐
∆𝑥. Ω(𝑝𝑒) −

𝐾𝑤

𝜐
∆𝑥. Ω(−𝑝𝑤)                                                                (18) 

 

     Θ(𝑝) =
𝑒𝑥𝑝(𝑝 2⁄ )−1

𝑒𝑥𝑝(𝑝)−1
=

1

𝑒𝑥𝑝(𝑝 2⁄ )+1
                                                         (19) 

 

     Ω(𝑝) =
1

2
−Θ(𝑝)

𝑝
=

𝑒𝑥𝑝(𝑝 2⁄ )−1

2𝑝(𝑒𝑥𝑝(𝑝 2⁄ )+1)
=

Θ(𝑝)

4𝜋(𝑝 2⁄ )
                                                     (20) 

 

Using Eq. (7) with constants (5) and (6), one obtains for the cell face e: 

 

      
∂Φ

∂x e
=

ΦE−ΦP+
𝐾𝑒
𝑢𝑒

∆𝑥

𝑒𝑥𝑝(𝑝𝑒)−1
.
𝑝𝑒

∆𝑥
. 𝑒𝑥𝑝 (

𝑝𝑒

2
) +

𝐾𝑒

𝑢𝑒
                                                     (21) 

 

By proceeding analogously for face w one obtains UNIFAES second derivative: 

 

     (
∂Φ

∂x e
−

∂Φ

∂x w
)

1

∆x
=

ΦE−ΦP

∆x2 𝜆(𝑝𝑒) +
ΦW−ΦP

∆x2 𝜆(−𝑝𝑤) +
𝐾𝑒

𝜐
. Υ(𝑝𝑒) +

𝐾𝑤

𝜐
. Υ(−𝑝𝑤)                                                        (22) 

 

     𝜆(𝑝) =
𝑝.𝑒𝑥𝑝(

𝑝

2
)

𝑒𝑥𝑝(𝑝)−1
= π(𝑝)𝑒𝑥𝑝 (

𝑝

2
)                                                        (23) 

 

     Υ(𝑝) =
1−π(𝑝)𝑒𝑥𝑝(

𝑝

2
)

𝑝
                                                                  (24) 

 

Paradoxically, the generalized UNIFAES derivatives are non-linear difference operators representing linear 

differential operators. Determining the UNIFAES derivative of the fluctuating component requires computing derivatives 

of instantaneous velocities at instantaneous conditions and derivatives of mean velocities at mean conditions, as indicated 

in the right side of eq. (25): 

 

     |
𝜕𝑢𝑖

𝜕𝑥𝑗

̃
| = |

𝜕(𝑈𝑖+𝑢𝑖)

𝜕𝑥𝑗

̃
|
𝑈𝑗+𝑢𝑗

− |
𝜕𝑈𝑖

𝜕𝑥𝑗

̃
|
𝑈𝑗

                                                          (25)  

  

Above procedure differs from applying UNIFAES instantaneous derivation directly to the fluctuating velocity 

components, as expressed in Eq. (26):  

 

     |
𝜕𝑢𝑖

𝜕𝑥𝑗

̃
|
𝑈𝑗+𝑢𝑗

= |
𝜕(𝑈𝑖+𝑢𝑖)

𝜕𝑥𝑗

̃
|

𝑈𝑗+𝑢𝑗

− |
𝜕𝑈𝑖

𝜕𝑥𝑗

̃
|
𝑈𝑗+𝑢𝑗

                                                   (26) 

 

In cases with steady mean conditions, linear approximation of UNIFAES differences can be defined by using only 

the local mean velocity in the cell Peclet number, as follows: 

 

     |
𝜕𝑢𝑖

𝜕𝑥𝑗
|

̃

𝑈𝑗

=  |
𝜕(𝑈𝑖+𝑢𝑖)

𝜕𝑥𝑗
|

̃

𝑈𝑗

 −   |
𝜕𝑈𝑖

𝜕𝑥𝑗
|

̃

𝑈𝑗

                                                          (27) 

  

3. TRANSPORT EQUATIONS 
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The transport equation for fluctuating kinetic energy can be written according to the advective – diffusive structure 

(28), or by expressing the viscous terms with the shear rate, as (29): 

 

     
𝜕𝑈𝑗𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅̅ 2⁄

𝜕𝑥𝑗
− 𝜈

𝜕2𝑢𝑖𝑢̅̅ ̅̅ ̅𝑖 2⁄

𝜕𝑥𝑗𝜕𝑥𝑗
= −𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅𝑆𝑖𝑗  –

𝜕𝑢𝑗𝑝̅̅ ̅̅ ̅

𝜕𝑥𝑗
−

𝜕𝑢𝑗𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅̅ ̅̅ ̅̅ /2

𝜕𝑥𝑗
 − 𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
                                               (28) 

 

     
𝜕𝑈𝑗𝑢𝑖𝑢𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
− 2𝜈

𝜕𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
  = −𝑢𝑖𝑢𝑗 ⃐      𝑆𝑖𝑗  −

𝜕𝑢𝑗𝑝̅̅ ̅̅ ̅

𝜕𝑥𝑗
−

𝜕𝑢𝑗𝑢𝑖𝑢𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 2𝜈 𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅                                                 (29) 

 

The transport equation of the “squared vorticity”, or enstrophy, 𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅, is (Tennekes and Lumley, 1972): 

 
𝜕𝑈𝑗𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
−

1

𝑅𝑒

𝜕2𝑤𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ̅ 2⁄

𝜕𝑥𝑗𝜕𝑥𝑗
= 𝑤𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ 𝑊𝑗 − 𝑤𝑖𝑢𝑗 ⃐       

𝜕𝑊𝑖

𝜕𝑥𝑗
+ 𝑤𝑖𝑤𝑗̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗 −

𝜕𝑢𝑗𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
− 𝑤𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅   −

1

𝑅𝑒

𝜕𝑤𝑖

𝜕𝑥𝑗

𝜕𝑤𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
                                (30) 

                                            

The transport equation for the velocity-vorticity tensor is deduced by Figueiredo (2018b, eq. 19): 

 

     
𝜕𝑢𝑖𝑤𝑘̅̅ ̅̅ ̅̅ ̅𝑈𝑗

𝜕𝑥𝑗
− 𝜈

𝜕2𝑢𝑖𝑤𝑘̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗𝜕𝑥𝑗
= 𝑢𝑖𝑤𝑗̅̅ ̅̅ ̅̅ 𝑆𝑘𝑗 − 𝑢𝑗𝑤𝑘̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗 + (𝑢𝑖𝑠𝑘𝑗̅̅ ̅̅ ̅̅ −

1

2
𝜀𝑖𝑗𝑙𝑢𝑙𝑤𝑘̅̅ ̅̅ ̅̅ ) 𝑊𝑗 −  

                                            −𝑢𝑖𝑢𝑗 ⃐      
𝜕𝑊𝑘

𝜕𝑥𝑗
− 𝑤𝑘

𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅̅
+ 𝑢𝑖𝑤𝑗𝑠𝑘𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ −

𝜕𝑢𝑖𝑤𝑘𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 2𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑤𝑘

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅
                                               (31) 

 

The transport equation for helicity is obtained by contracting indexes 𝑖, 𝑘 into 𝑖, 𝑖, yielding:  

 

     
𝜕𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ̅𝑈𝑗

𝜕𝑥𝑗
− 𝜈

𝜕2𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗𝜕𝑥𝑗
=

𝜕𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
𝑊𝑖 − 𝑢𝑖𝑢𝑗 ⃐      

𝜕𝑊𝑖

𝜕𝑥𝑗
− 𝑤𝑖

𝜕𝑝

𝜕𝑥𝑖

̅̅ ̅̅ ̅̅ ̅
+ 𝑢𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ −

𝜕𝑢𝑖𝑤𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
− 2𝜈

𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑤𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
                                                  (32) 

 

Above expression corrects Eq. (20) of Figueiredo (2018b) with respect to the term proportional to mean vorticity 𝑊𝑖. 

The error was repeated at Eq. (22) of Figueiredo (2020) and caused slow convergence of the helicity transport equation 

in the results presented there. Derivation of this term is presented now. After contraction, the factor multiplying the mean 

vorticity 𝑊𝑗 in Eq. (19) results:    

 

      𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ −
1

2
𝜀𝑖𝑗𝑙𝑢𝑙𝑤𝑖̅̅ ̅̅ ̅̅ =  𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ −

1

2
𝜀𝑙𝑗𝑖𝑢𝑖𝑤𝑙̅̅ ̅̅ ̅̅ =  𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ + 𝑢𝑖𝑟𝑗𝑖̅̅ ̅̅ ̅ =  𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ − 𝑢𝑖𝑟𝑖𝑗̅̅ ̅̅ ̅̅ = 𝑢𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖
= 

𝜕𝑢𝑖𝑢𝑗

𝜕𝑥𝑖
                               (33) 

    

Noticeably, the production terms of helicity equation are related to the mean vorticity and its gradient, while the 

production term of the kinetic energy equation is related to the mean shear, so that both components of the mean velocity 

gradient tensor are complementarily considered.  

 

4. RESULTS 

 

Computations refer to the Couette flow sketched at Fig. 1, with normalized dimensions 4x1x1, having lower and 

upper impermeable adherent walls, with normalized velocity 𝑈1 = 1 at 𝑥2 = 1, periodic conditions in span-wise direction 

𝑥3 , Reynolds number 600. Inlet and initial conditions are  𝒰𝑖 = 𝒰1(𝑥2)𝑒1 = 𝑥2𝑒1, where  𝑒𝑖  is versor in direction i.  

Cubic cells are adopted.       

 
Figure 1 – Domain composed by perturbed field, measurements region and hyper-viscous field. 

 

In the region 0 < 𝑥1 ≤ 1, an artificial oscillatory field  𝑓 induces periodic rotation around 𝑥3 axis: 
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𝑓 = 𝑀. 𝑠𝑖𝑛(2𝜋𝜇𝑡). 𝛽. 𝛾                                                                          (34)                    

                                                                        

𝛽 = 𝑒𝑥𝑝 {− [
(𝑥1−𝑥1

𝑂)
2

𝜎1
2 +

(𝑥2−𝑥2
𝑂)

2

𝜎2
2 +

(𝑥3−𝑥3
𝑂)

2

𝜎3
2 ]}                                               (35)                            

                                                                

𝛾 = [−(𝑥2 − 𝑥2
𝑂)𝑒1 + (𝑥1 − 𝑥1

𝑂)𝑒2]                                                 (36)               

                                                                             

where (𝑥1
𝑂,  𝑥2

𝑂,  𝑥3
𝑂) = (0.5, 0.5, 0.5),  𝑀 = 2,  𝜎1 = 𝜎2 = 0.2,  𝜎3 = 0.4  and  𝜇 = 0.5. 

In the last part of domain, 3 ≤ 𝑥1 < 4 , an hyper viscous fluid reduces the Reynolds number to 10 in order to enforce 

a steady flow compatible with homogeneous Newman conditions at outlet. 

Table 1 presents the values of kinetic energy, helicity and enstrophy in 18 nodes in planes 𝑥1=1.5 and 𝑥1=2.5, for 

Reynolds number 600 with mesh 240x60x60. The values of helicity and enstrophy depend on the discretization; generally 

differences are around or below 1%, except at nodes 1 and 3, with differences about 30%. Both forms of UNIFAES 

present almost coincident results, which are closer to the forth order central differencing than to the second order one.  

 

Table 1. Fluctuations statistics at selected nodes for Re=600 for mesh 240x60x60. 

 

Position 

𝑥1  = 1.5 𝑥1  = 2.5 

𝑥3= 0.25 𝑥3 = 0.5 𝑥3= 0.75 𝑥3= 0.25 
𝑥3 = 0.5 

 

𝑥3 = 0.75 

 

 

 

 𝑥2 

   = 

 .75 

Node 7 8 9 16 17 18 

  Kinetic x10-4 10-4 10-4 10-4         10-4 10-4 

        Energy 2.349 3.846 2.349 1.216      1.108 1.216 

Helicity 10-3       10-11 10-3 10-3 10-10 10-3 

CD 2nd       -1.503      3.515 1.503 -1.566 1.057 1.566 

      CD 4th  -1.493 3.561 1.493 -1.562 1.060 1.562 

Uni NL -1.496 3.557 1.496 -1.563 1.060 1.563 

Uni L -1.496 3.558 1.496 -1.563 1.060 1.563 

Enstrophy 10-2 10-2 10-2 10-2 10-3 10-2 

CD 2nd 1.038 1.024 1.038 1.533 6.280 1.533 

CD 4th 1.047 1.047 1.047 1.534 6.286 1.534 

Uni NL 1.046 1.042 1.046 1.535       6.289 1.535 

Uni L 1.046 1.042 1.046 1.535       6.290 1.535 

 

 

𝑥2  

= 

.50 

Node 4 5 6 13 14 15 

  Kinetic 10-3 10-3 10-3 10-4 10-4 10-4 

        Energy 1.127 1.095 1.127 2.756 1.291 2.756 

Helicity 10-2 10-10 10-2 10-3 10-10 10-3 

CD 2nd  -2.659 5.703 2.659 -7.836 5.332 7.836 

      CD 4th  -2.671 7.536 2.671 -7.916 5.350 7.916 

Uni NL -2.669 7.535 2.669      -7.897 5.350      7.897 

Uni L -2.669 7.536 2.669      -7.898 5.351      7.898 

Enstrophy 10-1 10-1 10-1       10-2  10-3       10-2 

CD 2nd 1.999 1.271 1.999 6.101 3.776 6.101 

CD 4th 2.022 1.285 2.022 6.240 3.807 6.240 

Uni NL     2.018 1.283     2.018 6.208 3.804 6.208 

Uni L     2.018 1.283     2.018 6.208 3.805 6.208 

 

 

𝑥2  

= 

 .25 

Node 1 2 3 10 11 12 

  Kinetic 10-4 10-4 10-4 10-6 10-6 10-6 

       Energy 1.016 1.076 1.016 6.278 7.929 6.278 

Helicity 10-5 10-11 10-5 10-5 10-11 10-5 

CD 2nd  -6.858 5.629 6.858 1.565      -2.675 -1.565 
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      CD 4th  -4.628 5.552 4.628 1.477 -2.708 -1.477 

Uni NL -5.159 5.576 5.159 1.498 -2.701 -1.498 

Uni L -5.157 5.576 5.157 1.498 -2.701 -1.498 

Enstrophy 10-3 10-3 10-3 10-4 10-5  10-4 

CD 2nd 6.174 1.360 6.174 2.269 8.395 2.269 

CD 4th 6.269 1.371 6.269 2.339 8.505 2.339 

Uni NL 6.246 1.368 6.246 2.321 8.474 2.321 

Uni L 6.245 1.368 6.245 2.321 8.474 2.321 

       

Following the symmetry of the initial perturbation, equal values of kinetic energy and enstrophy are observed in 

planes 𝑧3 = 0.25 and 𝑧3 = 0.75, as well as opposite values of helicity, which vanishes at central plane 𝑧3 = 0.5. Fluctuating 

variables generally decay from nodes at plane 𝑥1= 1.5 to corresponding nodes at plane 𝑥1= 2.5, but at level  𝑥2 = 0.75, 

helicity and particularly enstrophy increase. At level 𝑥2 = 0.25, helicity changes its sign between the two planes. Next 

Tables refer to node 4.  

Table 2 refers to the kinetic energy equation. Advective and pressure term are expressed in advective forms Aa=

𝑈𝑗 𝜕(𝑢𝑖𝑢𝑖 2⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜕𝑥𝑗⁄ , Ta= 𝑢𝑗 𝜕(𝑢𝑖𝑢𝑖 2⁄ ) 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and Pa= 𝑢𝑗 𝜕𝑝 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and in divergence forms Ad= 𝜕(𝑈𝑗 𝑢𝑖𝑢𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝜕𝑥𝑗⁄ , Td=

𝜕(𝑢𝑗𝑢𝑖𝑢𝑖 2⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄   and Pd=  𝜕𝑢𝑗𝑝̅̅ ̅̅ 𝜕𝑥𝑗⁄ .    

Each form of kinetic energy equation derives from one side of equality Vu=Vs, where Vu  = 𝜐𝑢𝑖 𝜕2𝑢𝑖 𝜕𝑥𝑗𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and 

Vs = 2𝜐𝑢𝑖 𝜕𝑠𝑖𝑗 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . The first form is decomposed in identity Vu=Df-Du, where Df = 𝜐 𝜕2 𝑢𝑖𝑢𝑖 2 ⁄̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜕𝑥𝑗𝜕𝑥𝑗⁄  and Du =

𝜐(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ )(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ; the second form according to Vs=Ts-Ds (Eq. 13), where Ts= 𝜐 𝜕𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄  and Ds= 𝜐𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ . The 

production term is P = 𝑢𝑖𝑢𝑗 ⃐      𝑆𝑖𝑗.    

Differences such as Aa≠Ad, Vu≠Df-Du etc., and the spreading of results among the schemes are put as percentage 

of the term with greater modulus. The divergence form turbulent transport (Td) according to generalized UNIFAES is 

computed as the difference between the mean advective terms according to non-linear and linear versions. The residuals 

of the transport equations are presented in absolute value and as percentage of the term with greater modulus. 

            

Table 2 – Statistics of kinetic energy transport equations for Re=600 at node 4 with different numerical schemes and 

algebraic forms. 

 

Term 

(or  ≠) 

40x40x160 60x60x240 

CD    2nd 

ord. 

CD    4th 

ord. 

Uni     

L 

Spread 

ing 

CD    2nd 

ord. 

CD    4th 

ord. 

Uni         

L 

Spread   

ing 

Aa  (E-4) -4.911 -4.910 -4.910 0.0 -4.986 -4.985 -4.986 0.0 

Ad  (E-4) -4.914 -4.911 -4.911 0.1 -4.987 -4.986 -4.985 0.0 

Aa≠Ad 0.1% 0.0% 0.0%  0.0% 0.0% 0.0%  

Ta  (E-5) 1.788 1.837 1.835 5.7 1.891 1.914 1.911 1.7 

Td  (E-5) 1.724 1.807 1.852 6.9 1.863 1.905 1.907 2.3 

Ta≠Td 3.6% 1.3% 0.9%  1.5% 0.5% 0.2%  

Pa  (E-4) -7.132 -7.148 -7.132 0.2 -6.938 -6.945 -6.938 0.1 

Pd  (E-4) -6.850 -7.056 -6.981 2.9 -6.816 -6.909 -6.875 1.3 

Pa≠Pd 4.0% 1.3% 2.1%  1.8% 0.5% 0.9%  

Df  (E-4) -1.328 -1.336 -1.328 0.9 -1.310 -1.314 -1.310 0.4 

Du (E-4) 4.127 4.248 4.228 2.8 4.073 4.126 4.116 1.3 

Vu (E-4) -5.540 -5.588 -5.557 0.9 -5.420 -5.441 -5.430 0.4 

Vu≠Df-Du 1.5% 0.1% 0.0%  0.7% 0.0% 0.1%  

Ts  (E-4) -3.692 -3.826 -3.795 3.5 -3.767 -3.828 -3.814 1.6 

Ds  (E-4) 1.508 1.573 1.561 4.1 1.485 1.513 1.508 1.9 

Vs  (E-4) -5.372 -5.573 -5.529 3.6 -5.374 -5.436 -5.416 1.1 

Vs≠Ts-Ds 3.2% 3.1% 3.1%  2.3% 1.7% 1.7%  

Vs≠Vu 3.0% 0.3% 0.5%  0.8% 0.1% 0.3%  

Pr  (E-4) 6.817 6.837 6.832 0.3 6.629 6.637 6.635 0.1 

Resid. Eq. 

12  (E-5) 

-4.085 

5.7% 

5.465 

7.6% 

5.294 

7.4% 

 2.773     

4.0% 

3.379  

4.9% 

3.291  

4.7% 

 

Resid. Eq. 

13  (E-5) 

-1.528  

2.1% 

3.570 

5.0% 

3.293 

4.6% 

 1.455  

2.1% 

2.380 

3.4% 

2.239 

3.2% 
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Table 3 refers to the helicity equation. Advection and pressure terms of the equation admit advective and divergence 

forms: Aa=𝑈𝑗 𝜕𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄ , Ad=𝜕(𝑈𝑗𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ) 𝜕𝑥𝑗⁄ , Ta= 𝑢𝑗 𝜕(𝑢𝑖𝑤𝑖) 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, Td= 𝜕𝑢𝑖𝑤𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄ , Pa= 𝑤𝑗 𝜕𝑝 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  and Pd= 

𝜕(𝑝𝑤𝑗) 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. There are two production terms by interaction with mean velocity fields: P1= 𝜕(𝑢𝑖𝑢𝑗) 𝜕𝑥𝑗⁄ 𝑊𝑖 and P2 =

𝑢𝑖𝑢𝑗 ⃐      𝜕𝑊𝑖 𝜕𝑥𝑗⁄ . The fluctuating production term admits distinct algebraic forms: Pt1= 𝑢𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ , Pt2= 𝑤𝑗 𝜕(𝑢𝑖𝑢𝑖 2⁄ ) 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

and Pt3= 𝜕(𝑤𝑗𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅̅ ̅̅ 2⁄ ) 𝜕𝑥𝑗⁄ . The viscous terms of the helicity equation used equality V=Df-Ds, with V=

𝜐(𝑢𝑖 𝜕2𝑤𝑖 𝜕𝑥𝑗𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑤𝑖 𝜕2𝑢𝑖 𝜕𝑥𝑗𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅), Df= 𝜐 𝜕2𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗𝜕𝑥𝑗⁄  and Ds = 𝜐(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ )(𝜕𝑤𝑖 𝜕𝑥𝑗⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . 

 

Table 3 – Statistics of helicity transport equations for Re=600 at node 4 with different numerical schemes and algebraic 

forms. 

 

Term 

 

    (or  ≠) 

40x40x160 60x60x240 

CD       

2nd ord. 

CD      

4th ord. 

Uni     

L 

Spread 

ing 

CD      

2nd ord. 

CD      

4th ord. 

Uni     

       L 

Spread 

ing 

Aa  (E-3) 6.999 6.954 6.986 0.6 7.292 7.273 7.286 0.3 

Ad  (E-3) 7.003 6.955 6.983 0.7 7.293 7.274 7.284 0.3 

Aa≠Ad 0.1% 0.0% 0.0%  0.0% 0.0% 0.0%  

Ta  (E-4) -3.001 -3.295 -3.223 10.0 -3.547 -3.699 -3.663 4.1 

Td  (E-4) -3.063 -3.317 -3.276 7.7 -3.574 -3.709 -3.664 3.6 

Ta≠Td 1.3% 0.5% 0.8%  0.0% 0.1% 0.2%  

Pa  (E-2) 1.445 1.470 1.461 1.7 1.429 1.440 1.436 0.8 

Pd  (E-2) 1.439 1.470 1.462 2.1 1.426 1.440 1.436 1.0 

Pa≠Pd 0.4% 0.0% 0.1%  0.2% 0.0% 0.0%  

Df  (E-3) 5.817 5.920 5.862 1.7 5.716 5.760 5.734 0.8 

Du (E-2) -1.024 -1.060 -1.050 3.4 -1.013 -1.028 -1.024 1.5 

Vu (E-2) 1.615 1.652 1.635 2.2 1.588 1.605 1.597 1.1 

Vu≠Df-Du 0.6% 0.0% 0.1%  0.2% 0.1% 0.0%  

P1  (E-3) 4.973 5.095 5.064 2.4 4.944 4.998 4.985 1.0 

P2  (E-3) -1.232 -1.267 -1.258 2.8 -1.228 -1.244 -1.240 1.3 

Pt1 (E-5) -4.744 -5.681 -5.211 19.5 -6.473 -6.937 -6.731 6.7 

Pt2 (E-5) -4.801 -5.701 -5.637 23.1 -6.514 -6.942 -6.885 7.0 

Pt3 (E-5) -4.765 -5.629 -5.535 15.3 -6.490 -6.926 -6.858 6.3 

≠Pt123 1.2% 1.3% 7.6%  0.6% 0.2% 2.2%  

Resid. Eq. 

(E-3) 

-1.071  

7.4% 

-1.493  

10.2% 

-1.366  

9.3% 

 -0.730   

5.1% 

-0.915  

6.4% 

-0.857   

6.0% 

 

 

Table 4 – Statistics of enstrophy transport equations for Re=600 at node 4 with different numerical schemes and 

algebraic forms. 

 

Term 

 

    (or  ≠) 

40x40x160 60x60x240 

CD         

2nd ord. 

CD       

4th ord. 

Uni      

L 

Spread 

ing 

CD      

2nd ord. 

CD     

4th ord. 

Uni        

L 

Spread   

ing 

Aa  (E-2) -8.528 -8.584 -8.600 0.8 -8.701 -8.728 -8.732 0.4 

Ad  (E-2) -8.530 -8.585 -8.598 0.8 -8.702 -8.729 -8.732 0.3 

Aa≠Ad 0.0% 0.0% 0.0%  0.0% 0.0% 0.0%  

Ta  (E-3) 2.763 3.629 3.368 23.9 3.641 4.075 3.959 10.7 

Td  (E-3) 3.066 3.743 3.399 18.1 3.774 4.113 3.959 8.2 

Ta≠Td 9.9% 3.0% 0.9%  3.5% 0.9% 0.0%  

Df  (E-2) -4.918 -5.133 -5.027 4.2 -4.855 -4.948 -4.901 1.9 

Du (E-2) 8.571 9.332 9.183 8.2 8.648 8.987 8.917 3.8 

Vu (E-2) -13.791 -14.484 -14.234 4.8 -13.637 -13.938 -13.833 2.2 

Vu≠Df-Du 2.2% 0.1% 0.2%  1.0% 0.0% 0.1%  

P1 (E-2) 1.693 1.780 1.757 4.9 1.692 1.731 1.721 2.3 

P2 (E-2) 8.002 8.175 8.149 2.1 7.912 7.987 7.974 0.9 

P3 (E-2) -1.345 -1.401 -1.383 4.0 -1.347 -1.372 -1.364 1.8 

PT (E-4) -8.787 -8.320 -8.757 7.9 -6.874 -6.607 -6.794 3.9 
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Resid. Eq. 

(E-3) 

1.861   

2.2% 

11.619  

12.5% 

8.521   

9.3% 

 2.255  

2.6% 

6.603   

7.3% 

5.250  

5.9% 

 

 

Table 4 refers to the enstrophy equation. Mean and turbulent transport terms admit advective and divergent forms: 

Aa = 𝜕(𝑈𝑗 𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝜕𝑥𝑗⁄ , Ad=𝑈𝑗 𝜕 𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜕𝑥𝑗⁄ , Ta=𝑢𝑗 𝜕(𝑤𝑖𝑤𝑖 2⁄ ) 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and Td = 𝜕𝑢𝑗 𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄ . The viscous terms 

results from identity V=Df-Ds, where V= 𝜐𝑤𝑖 𝜕2𝑤𝑖 𝜕𝑥𝑗𝜕𝑥𝑗⁄ , Df = 𝜐 𝜕2(𝑤𝑖𝑤𝑖̅̅ ̅̅ ̅̅ 2⁄ ) 𝜕𝑥𝑗𝜕𝑥𝑗⁄  and Ds=

𝜐(𝜕𝑤𝑖 𝜕𝑥𝑗⁄ )(𝜕𝑤𝑖 𝜕𝑥𝑗⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. There are three production terms due to interaction of mean and fluctuating field, P1=

𝑤𝑖𝑢𝑗 ⃐       𝜕𝑊𝑖 𝜕𝑥𝑗⁄ , P2= 𝑤𝑖𝑤𝑗̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗  and P3= 𝑤𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ 𝑊𝑗, and one production term due to the fluctuating field only, Pt =  𝑤𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅. 

 

5. CONCLUSION 

 

For all scalars, differences between advective and divergence forms of the advective term are negligible, as well as 

differences between the advective terms of the various schemes. 

The differences between algebraic forms and the spreading of results between the measuring schemes reduce at ratio 

generally close to 9:4 from mesh 160x40x40 to mesh 240x60x60, as expected for quadratic behavior. The residuals of 

the transport equations appear to reduce in sub-quadratic fashion. Second order central differencing usually presented the 

greater discrepancies between algebraic forms, forth order central differencing the smallest, and UNIFAES intermediate, 

tending to be closer to the fourth order scheme. However, the second order central differencing was the scheme that 

presented the smallest unbalances, whilst the fourth order scheme presented the greatest. 

This paradox derives from the fact that the various schemes are operating upon the field produced by the solver, 

which evolves with refinement. Differences between algebraic forms depend solely on the scheme, and in this matter the 

fourth order scheme shows its expected superiority. But any comparison involving varying refinement depends also on 

the solver. 

Since the generalized UNIFAES scheme employs the interpolating curve of the solver, it may be considered as 

reference for the solver convergence errors. In this interpretation, the errors of second order central differencing upon the 

velocity field partially compensates the errors of solver itself, whilst the errors of forth order scheme added to the solver 

error, in node 4.  
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