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Abstract. Several flows of practical interest are from viscoelastic fluids, and it is often desirable to know whether these
flows propagate in a laminar or turbulent state. The present work investigates the convection of Tollmien-Schlichting
waves in a two-dimensional Poiseuille incompressible flow for a viscoelastic fluid. The non-Newtonian fluid is modelled
by the Phan-Thien Tanner linear constitutive equation (PTT). Linear Stability Theory (LST) is used to verify the stability
of the fluid flows. In LST analysis, the equations are linearized for a viscoelastic fluid flow. The results presented are the
neutral stability curves by varying the dimensionless parameters for the viscoelastic fluid model and comparing them with
the Newtonian fluid.
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1. INTRODUCTION

Fluids can be classified as Newtonian and non-Newtonian. In Newtonian fluids, each component of applied shear
stress is linearly proportional to the strain rate, the proportionality constant being equal to the dynamic viscosity. In non-
Newtonian fluids, this proportionality does not happen. One class of non-Newtonian fluids is viscoelastic. When they are
subjected to shear stress, they undergo deformation, and when this ceases, there is a specific recovery of the deformation
suffered. The main objective of this work is to study the stability of the two-dimensional incompressible Poiseuille flow
of a viscoelastic fluid (modelled by the LPTT). The investigation of this phenomenon is carried out through the analysis of
the convection of Tollmien-Schlichting waves for the considered flow, using the techniques of Theory of Linear Stability,
to analyze the stability of the flow of viscoelastic fluid of the LPTT type and compare it with that of Newtonian fluids.

The most popular linear viscoelastic model is Maxwell’s Beris et al. (1987), Mompean and Deville (1997) model,
which associates the idea of a fluid that presents characteristics s of both an elastic solid and a viscous Newtonian fluid.
Among the main nonlinear viscoelastic models found in the literature the differential models can be mentioned: Oldroyd-
B Brasseur et al. (1998), Alves et al. (2003), White-Metzner White and Metzner (1963), Giesekus Giesekus (1982),
Leonov Leonov (1976), FENE Bird et al. (1980), PTT Thien and Tanner (1977), Alves et al. (2003) and derivatives,
PomPom Luo and Tanner (1986), Luo and Tanner (1988). In general, viscoelastic models, can qualitatively describe the
nonlinear viscoelastic behavior of polymer melts Bretas (2005). Many elastic instabilities have been reported in recent
years, corresponding to experimental or theoretical work using linear stability analysis (Larson et al. (1990), Shaqfeh
et al. (1992), Larson (1992)).

2. METHODOLOGY

The model used in this work is the LPTT (Linear Phan-Thien-Tanner), whose constitutive equation can be written as
follows:

f(tr(T))T + λ
∇
T= 2ηpD, (1)

where D = 1
2 (∇u + (∇u)T ) is the strain tensor rate, λ is the fluid relaxation time, η is the viscosity contributed by the

polymer, and f(tr(T)) is the stress coefficient function.
The PTT model is considered in linear form; that is, the function f is given by:

f(tr(T)) = 1 +
λϵ

ηp
tr(T). (2)

The notation f(tr(T))T is used to represent the trace of the extra tension tensor T and the symbol
∇
T represents the

convected derivative given by:

∇
T=

DT
Dt

− T · L − LT · T, (3)
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where L = ∇u − ξD is called the effective velocity gradient, ϵ and ξ are positive model parameters, the constant being ϵ
a parameter related to the elongational behavior of the model and ξ affects the shear behavior.

After algebraic manipulations, the equations of the non-Newtonian tensors for the LPTT model are obtained:

f(tr(T ))T xx + λ
(

∂Txx

∂t + ∂(uTxx)
∂x + ∂(vTxx)

∂y − 2T xx(1− ξ)∂u∂x − 2T xy
(
1− 1

2ξ
)

∂u
∂y + T xyξ ∂v

∂x

)
= 2ηp

∂u
∂x ,

f(tr(T ))T xy + λ
(

∂Txy

∂t + ∂(uTxy)
∂x + ∂(vTxy)

∂y − T xx
(
1− 1

2ξ
)

∂v
∂x + + T xx ξ

2
∂u
∂y − T yy

(
1− 1

2ξ
)

∂u
∂y + T yy ξ

2
∂v
∂x

)
= ηp

(
∂v
∂x + ∂u

∂y

)
,

f(tr(T ))T yy + λ
(

∂Tyy

∂t + ∂(uTyy)
∂x + ∂(vTyy)

∂y − 2T yy(1− ξ)∂v∂y + − 2T xy
(
1− 1

2ξ
)

∂v
∂x

)
+ T xyξ ∂u

∂y

)
= 2ηp

∂v
∂y .

2.1 Dimensionless Equations

The parameters adopted are length L, velocity U and density ρ. The dimensionless variables (added by the superscript
*) are given below:

x∗ =
x
L
, u∗ =

u
U
, t∗ =

tU

L
, p∗ =

p

ρU2
, T∗ =

T
ρU2

, (4)

When applying changes in variables (4) the dimensionless numbers appear: Reynolds number (Re), Weissenberg
number (Wi) and the constant β.

• Reynolds number (Re): Represents the ratio between the inertial forces and the viscous forces of the flow and is
defined by:

Re =
ρUL

η0
, (5)

where η0 is the total dynamic viscosity of the fluid, given by η0 = ηs + ηp, where ηs is the viscosity of the solvent and ηp
the viscosity of the polymer.

• Weissenberg number(Wi): For a viscoelastic fluid, is the ratio of a characteristic fluid time scale to a flow time
scale:

Wi =
λU

L
, (6)

• Constant β: The constant β ∈ (0, 1) is a quantity that controls the contribution of the Newtonian solvent, defined
by:

β =
ηs
η0

. (7)

Dimensionalized equations of the non-Newtonian tensors for the LPTT model:

f(tr(T ))T xx+Wi
(

∂Txx

∂t + ∂(uTxx)
∂x + ∂(vTxx)

∂y − 2T xx(1− ξ)∂u∂x + − 2T xy
(
1− 1

2ξ
)

∂u
∂y + T xyξ ∂v

∂x

)
= 2 (1−β)

Re
∂u
∂x ,

f(tr(T ))T xy+Wi
(

∂Txy

∂t + ∂(uTxy)
∂x + ∂(vTxy)

∂y − T xx
(
1− 1

2ξ
)

∂v
∂x + + T xx ξ

2
∂u
∂y − T yy

(
1− 1

2ξ
)

∂u
∂y + T yy ξ

2
∂v
∂x

)
= (1−β)

Re

(
∂v
∂x + ∂u

∂y

)
,

f(tr(T ))T yy+Wi
(

∂Tyy

∂t + ∂(uTyy)
∂x + ∂(vTyy)

∂y − 2T yy(1− ξ)∂v∂y + − 2T xy
(
1− 1

2ξ
)

∂v
∂x

)
+T xyξ ∂u

∂y

)
= 2 (1−β)

Re
∂v
∂y .

2.2 Linear Stability Theory

For analysis using the Theory of Linear Stability in this work, the base flow invariant in the x direction was considered,
that is:

u = U(y), v = 0, p = P (x, y), T = T(y). (8)

It is considered that the instantaneous flow can be decomposed by a base flow and a perturbed flow; the dependent
variables are decomposed as follows:

u(x, y, t) = U(y) + ũ(x, y, t),

v(x, y, t) = ṽ(x, y, t),

p(x, y, t) = P (x, y) + p̃(x, y, t),

T (x, y, t) = T(y) + T̃ (x, y, t).
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SCHLICHTING (1979) states that the perturbations must be small in that nonlinear terms can be neglected compared
to linear terms. Thus, the simplified system is given by:

∂ũ

∂x
+

∂ṽ

∂y
= 0,

∂ũ

∂t
+ U

∂ũ

∂x
+ ṽ

∂U

∂y
= −∂p̃

∂x
+

β

Re

(
∂2ũ

∂x2
+

∂2ũ

∂y2

)
+

∂T̃ xx

∂x
+

∂T̃ xy

∂y
,

∂ṽ

∂t
+ U

∂ṽ

∂x
= −∂p̃

∂y
+

β

Re

(
∂2ṽ

∂x2
+

∂2ṽ

∂y2

)
+

∂T̃ xy

∂x
+

∂T̃ yy

∂y
.

For the equation of the non-Newtonian tensor T xx, one has that:

f(tr(T )) =

1 + ϵ
ReWi

(1− β)︸ ︷︷ ︸
constante (C)

(T xx + T yy)

T xx =
[
1 + C(T xx + T̃ xx) + (T yy + T̃ yy)

]
(T xx + T̃ xx) = T̃ xx +

C
(
2T xxT̃ xx + T xxT̃ yy + T yyT̃ xx

)
.

C
(
2T xxT̃ xx + T xxT̃ yy + T yyT̃ xx

)
T̃ xx + Wi

(
∂T̃xx

∂t + U ∂T̃xx

∂x + ṽ ∂Txx

∂y − 2T̃ xy ∂U
∂y + ξT̃ xy ∂U

∂y − 2Txy ∂ũ
∂y

+ξTxy ∂ũ
∂y + T xx ∂ṽ

∂y − T xx ∂ũ
∂x + 2ξT xx ∂ũ

∂x +ξT xy ∂ṽ
∂x

)
= 2 (1−β)

Re
∂ũ
∂x ,

For the equation of the non-Newtonian tensor T xy , one has that:

C
(
T xyT̃ xx + T xxT̃ xy + T yyT̃ xy + T xyT̃ yy

)
T̃ xy+Wi

(
∂T̃xy

∂t + U ∂T̃xy

∂x + ũ∂Txy

∂x + ṽ ∂Txy

∂y − ξ
2 T̃

xx ∂U
∂y + ξ

2 T̃
yy ∂U

∂y

+ ξ
2T

xx ∂ũ
∂y −T yy ∂ũ

∂y +
ξ
2T

yy ∂ũ
∂y +Tyy ∂ũ

∂y +T xy ∂ṽ
∂y + T̃ xy ∂U

∂x −T xx ∂ṽ
∂x +

ξ
2T

xx ∂ṽ
∂x +

ξ
2 T yy ∂ṽ

∂x

)
= (1−β)

Re

[
∂ṽ
∂x + ∂ũ

∂y

]
,

For the equation of the non-Newtonian tensor T yy, one has that:

C
(
2T yyT̃ yy + T yyT̃ xx + T xxT̃ yy

)
T̃ yy + Wi

(
∂T̃yy

∂t + U ∂T̃yy

∂x + ṽ ∂Tyy

∂y + ξT̃ xy ∂U
∂y + ξT xy ∂ũ

∂y −Tyy ∂ṽ
∂y+

2ξTyy ∂ṽ
∂y + T yy ∂ũ

∂x − 2T xy ∂ṽ
∂x +ξT xy ∂ṽ

∂x

)
= 2 (1−β)

Re
∂ũ
∂x .

The resulting equations are linear, and the coefficients of the equations do not depend on t and x; the solutions can be
searched using the separation of variables method as follows:

ũ(x, y, t) = u(y)ei(αx−ωt),

ṽ(x, y, t) = v(y)ei(αx−ωt),

p̃(x, y, t) = p(y)ei(αx−ωt),

T̃ (x, y, t) = T (y)ei(αx−ωt),

i =
√
−1, α being the wave number in the x direction and u, v, p and T being the amplitudes of the perturbations. Where

ω is the frequency with which the perturbations, of wavelength λ = 2π/α and wave speed c = ω
α , propagate. We also

consider u, v and p as amplitudes of the perturbations. Assuming that these equations make up a solution to the simplified
system, the conjugate complexes also make up a possible solution to the system in question. A linear combination of the
solutions is taken as the solution belonging to the set of real numbers.

Substituting these linear combinations into the equations obtained for the perturbations, one has:

Continuity:

iαu+ v′ = 0. (9)

For the momentum equation in the x direction, we have:

Re(iαU − iω)u− β(u′′ − α2u) +RevU ′ = iα(T
xx − p) + T

′xy
. (10)

For the momentum equation in the y direction, we have:

Re(iαU − iω)v − β(v′′ − α2v) = iαT
xy

+ T
′yy − p. (11)
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For the tensors T xx, T xy and T yy, we have:

C
(
2T xxT

xx
+ T xxT

yy
+ T yyT

xx
)
T

xx
+Wi

(
−iωT

′xx
+ iαUT

′xx
+ vTxx − 2T

xy ∂U
∂y + ξT

xy ∂U
∂y − 2Txy ∂u

∂y

+ξTxy ∂u
∂y + T xx ∂v

∂y − iαuT xx + 2iαξuT xx +iαξvT xy) = 2iα(1−β)
Re u ,

C
(
T xyT

xx
+ T xxT

xy
+ T yyT

xy
+ T xyT

yy
)
T

xy
+ Wi

(
−iωT

xy
+ iαUT

xy
+ vTxy + ξ

2T
xx ∂U

∂y − ξ
2T

yy ∂U
∂y +

ξ
2T

yy ∂U
∂y + ξ

2T
xx ∂u

∂y −Tyy ∂u
∂y + ξ

2T
yy ∂u

∂y +Txy ∂v
∂y + iαuT xy − iαvT xx + iα ξ

2vT
xx + iα ξ

2vT
yy
)
= (1−β)

Re( ∂u
∂y+iαv

)
,

C
(
2T yyT

yy
+ T yyT

xx
+ T xxT

yy
)
T

yy
+ Wi

(
−iωT

yy
+ iαUT

yy
+ vTyy + ξT

xy ∂U
∂y + ξT xy ∂u

∂y −Tyy ∂v
∂y+

2 ξTyy ∂v
∂y + iαT yyu− 2ivαT xy +iαξvT xy) = 2iα(1−β)

Re v . (12)

2.3 Baseflow

An explicit solution was obtained using the numerical solution seen in the equations (9)-(12) for the baseflow for the
LPTT fluid. This solution was obtained using the Mathematica and Matlab/Octave tools, and a paper with the results is
submitted to the Journal of Non-Newtonian Fluid Mechanics ARAUJO et al. (2022).

2.4 Numerical Method

A 2D spatial LST code was used to analyze the spatial stability of flow in a channel for the LPTT viscoelastic model.
α is searched for stability analysis of a perturbation given ω (temporal frequency). A spectrum of eigenvalues is obtained
where a search is done for the most unstable eigenvalue. The system for the LPTT viscoelastic model starting from the
equations (9)-(12) is as follows:

Id is the m x n identity matrix of Chebyshev modes in the matrix below. Zero represents a matrix m x n size of
Chebyshev modes. 1i is the imaginary unit of a complex number that can be written that way in Matlab or octave. It is a
matrix of blocks, and each block has the Chebyshev number squared.

varTxxu = −2 ·Wi · Txyb ·Dy +Wi · xi · Txyb ·Dy;
varTxxv = +Wi · dTxxbdy · Id;
varTxxTxy = −2 ·Wi · dUdy · Id+Wi · xi · dUdy · Id;
varTxxTyy = +cte · Txxb · Id;
varTxxαu = +21i ·Wi · Txxb · Id− 2 · 1i ·Wi · xi · Txxb · Id+ 2 · 1i · (1− β)/Re · Id;
varTxxαv = −1i ·Wi · xi · Txyb · Id;
varTxxαTxx = −1i ·Wi · U · Id;

varTxyu = +1/2 ·Wi · xi · Txxb ·Dy −Wi · Tyyb ·Dy + 0.5 ·Wi · xi · Tyyb ·Dy − (1− β)/Re ·Dy;
varTxyv = +Wi · dTxybdy · Id+Wi · xi · Txyb ·Dy;
varTxyTxx = +cte · Txyb · Id+ 0.5 ·Wi · xi · dUdy · Id;
varTxyTyy = +cte · Txyb · Id−Wi · dUdy · Id+ 0.5 ·Wi · xi · dUdy · Id;
varTxyαu = −1i ·Wi · xi · Txyb · Id;
varTxyαv = +1i ·Wi · Txxb · Id− 0.5 ·Wi · xi · Txxb · Id− 0.5 · 1i ·Wi · xi · Tyyb · Id+ 1i · (1− β)/Re · Id;
varTxyαTxy = −1i ·Wi · U · Id;

varTyyu = +Wi · xi · Txyb ·Dy;
varTyyv = +Wi · dTyybdy · Id− 2Wi · Tyyb ·Dy − 2 ·Wi · xi · Tyyb ·Dy + 2 · (1− β)/Re ·Dy;
varTyyTxx = +cte · Tyyb · Id;
varTyyTxy = +Wi · xi · dUdy · Id;
varTyyαv = +2 · 1i ·Wi · Txyb · Id− 1i ·Wi · xi · Txyb · Id;
varTyyαTyy = −1i ·Wi · U · Id;

var = −1i · omega · Id− (β/Re) ·Dy2;
varTxxTxx = +Id+ 2 · cte · Txxb · Id+ cte · Tyyb · Id− 1i · omega ·Wi · Id;
varTxyTxy = +Id+ cte · Txxb · Id+ cte · Tyyb · Id− 1i · omega ·Wi · Id;
varTyyTyy = +Id+ cte · Txxb · Id+ 2 · cte · Tyyb · Id− 1i · omega ·Wi · Id;

Where the matrix L is given by:
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

zero zero Dy zero zero zero zero zero
var zero dUdy zero zero zero -Dy zero
zero Id zero zero zero zero zero zero
zero zero var zero Dy zero zero -Dy
zero zero zero Id zero zero zero zero
varTxxu zero varTxxv zero zero varTxxTxx varTxxTxy varTxxTyy

varTxyu zero varTxyv zero zero varTxyTxx varTxyTxy varTxyTyy

varTyyu zero varTyyv zero zero varTyyTxx varTyyTxy varTyyTyy


,

and the matrix F is given by:

-1i*Id zero zero zero zero zero zero zero
-1i*U -(β/Re) ∗ Id zero zero -1i*Id 1i*Id zero zero
Id zero zero zero zero zero zero zero
zero zero -1i*U -(β/Re) ∗ Id zero zero 1i*Id zero
zero zero Id zero zero zero zero zero
varTxxαu zero varTxxαv zero zero varTxxαTxx zero zero
varTxyαu zero varTxyαv zero zero zero varTxyαTxy zero
zero zero varTyyαv zero zero zero zero varTyyαTyy


The system is constructed as follows L∗[u;α∗u; v;α∗v; p;Txx;Txy;Tyy]T = α∗F∗[u;α∗u; v;α∗v; p;Txx;Txy;Tyy]T .

Figure 1 shows the eigenvalue spectra obtained by the eigenvalue problem. In the second figure, a search for the most
unstable eigenvalue is performed.
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Figure 1. Spectrum of eigenvalues.

2.5 Verification

The verification of the LST code implemented for the plane, two-dimensional, incompressible and isothermal Poiseuille
problem, using the LPTT viscoelastic fluid model, was performed. The verification was performed by comparing the de-
veloped code considering 1 and ϵ = 1 × 10−5 (zero becomes unstable, and the code does not converge to the solution)
in the equation 1 representing the LPTT model with the one that had already been developed for the Oldroyd-B model
Gervazoni (2016). It is worth noting that when ξ = 0 and ϵ = 0 in the 1 equation, the constitutive equation obtained is
from the Oldroyd-B model. From the neutral curves of Figures 2 and 3, a close agreement between the Oldroyd-B and
LPTT viscoelastic models is observed. Thus, the verification performed indicates that the implemented code can simulate
and analyze the stability of two-dimensional flows with the LPTT model.
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Figure 2. Comparison of neutral curves for the Oldroyd-B ( ◦ ) black curve and LPTT ( - ) red curve models.
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Figure 3. Comparison of neutral curves for the Oldroyd-B ( ◦ ) black curve and LPTT ( - ) red curve models.

3. RESULTS

The results are presented where the stability of a two-dimensional flow for a viscoelastic fluid of the LPTT type, using
the Linear Stability Theory. Spatial analysis was performed by elaborating stability curves for each set of parameters.
Numerical simulations were performed to find the values of αi for various Reynolds values and frequency ω.

Checking the influence of the Weissenberg number (Wi):
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Figure 4. Spatial neutral stability diagram for β = 0.2 and 0.9, ξ = 0, ϵ = 0.5 and 0.75 e Wi = 1, 2, 5, 10, 20, 50 and
100.

In figure 4, the neutral stability curves of the LPTT model as the value of Wi increases, there is a shift of the neutral
curve to the left, indicating that the flow becomes unstable for smaller Reynolds number values. This shift is much less
pronounced when the Weissenberg number (Wi) has values of 50 and 100. Increasing the value of the constant (Wi) to
0.9 (closer to the Newtonian fluid), it is noticed that the neutral stability curves of the LPTT model as the value of (Wi)
increases. The neutral curve shifts to the left, indicating that the flow becomes unstable for smaller Reynolds number
values. This shift is much less pronounced when the Weissenberg number (Wi) has values of 50 and 100.
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Checking the influence of the constant β:
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Figure 5. Spatial neutral stability diagram for β = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9, ξ = 0, ϵ = 1 and Wi = 1
and 100.

In Figure 5, it is observed that in the neutral stability curves of the LPTT model, as soon as the value of β increases,
the value of ω increases. In the Figure on the left, one notices that for values near β = 0.2 and for values near β = 0.9, the
neutral curve shifts to the right. For values of β between β = 0.8 and β = 0.4, the departure from the neutral curve tends
to the left, indicating that the flow becomes unstable for smaller Reynolds number values. The critical Reynolds number is
close to 5000. In the Figure to the right, it is observed that as the value of β decreases, the neutral stability curve shifts to
the left, where it is notable that the flow becomes unstable for smaller Reynolds number values. It is noteworthy that as the
value of β increases, the neutral stability curves of the LPTT model get closer to the neutral curve of the Newtonian model.

Checking the influence of the constant ϵ:
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Figure 6. Spatial neutral stability diagram for β = 0.2, ξ = 0, ϵ = 0.5, 0.75, and 1 and Wi = 2 and 100.

Analyzing Figure 6, the neutral stability curves of the LPTT model as the value of ϵ increases, the neutral curve shifts
to the left. This departure is most noticeable in the Figure on the left, showing that the flow becomes unstable for smaller
Reynolds number values. In the Figure on the right, it is observed that when the Weissenberg number (Wi) increases,
the neutral curve shifts to the left, but the spacing between the neutral curves is less pronounced. In these figures, the
Newtonian fluid flow is more stable than the LPTT fluid flows.

Checking the influence of the constant ξ:
It can be observed in the Figure 7 on the left, that the neutral stability curves of the LPTT model as the value of Wi

increases and ξ decreases for ξ = 0, there is a shift of the neutral curve to the left, indicating that the flow becomes
unstable for smaller Reynolds number values. In the Figure on the right, as the value of ϵ increases for ϵ = 1 and the
value of ξ decreases for xi = 0, the displacement of the neutral stability curve tends to the left, making the flow more
unstable for smaller Reynolds number values. Analyzing the figures, it can be seen that the neutral stability curves of the
LPTT model get closer to the neutral curve of the Newtonian model as the value of beta increases and when the value of
Wi decreases.
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Figure 7. Spatial neutral stability diagram for β = 0.4, ξ = 0 and 0.25, ϵ = 0.5, 0.75 and 1 and Wi = 1 and 10.

4. CONCLUSIONS

The incompressible, isothermal, two-dimensional flow equations for a non-Newtonian viscoelastic fluid were pre-
sented. The viscoelastic model adopted was the Linear Phan Thien Tanner model (LPTT). Spatial analysis was used to
investigate the stability of viscoelastic fluid flows using the Linear Stability Theory through neutral stability curves. The
neutral stability curves were evaluated only through the two-dimensional perturbations for different values of dimension-
less parameters of the model. The numerical results obtained using the LST technique were satisfactory in analyzing the
stability of viscoelastic flows.
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