EP Escola de Primavera de ,\\
Transi¢ao e Turbuléncia [‘B '} n‘
Blumenau 2022 C- -

EPTT-2022-0048
STUDY OF COMPRESSIBLE DIRECT NUMERICAL SIMULATIONS OF
TOLLMIEN-SCHLICHTING WAVES INTERACTING WITH BUMPS

Ana Elisa Basilio de Carvalho!

Fernando H T Himeno?

Marlon Sproesser Mathias®

Marcello Augusto Faraco de Medeiros*

124 S50 Carlos School of Engineering, University of Sdo Paulo, EESC-USP.

3 Institute of Advanced Studies, USP.

! anaelisabasilio@usp.br, ? fernando.himeno@usp.br, > marlon.mathias @usp.br, * marcello@sc.usp.br

Abstract. Through Direct Numerical Simulations (DNS), this work investigates the boundary layer stability of two-
dimensional TS waves over a smooth plate with a two-dimensional isolated bump immersed in a compressible laminar
boundary layer flow. The objective of the current work is to investigate aspects of the linear regime with the DNS code for
hydrodynamic instability analysis on different Mach numbers. The numerical simulations were performed by a high order
DNS for the compressible Navier-Stokes equations, developed by the Group of Aeroacoustics, Transition and Turbulence
(GATT) of the Department of Aeronautical Engineering of the Sdo Carlos School of Engineering, University of Sdo Paulo
(EESC-USP). A rectangular bump is positioned on a smooth plate. Five different bumps were defined by their height,
proportional to the boundary layer displacement thickness at the position of the center of the bump on the smooth plate,
that is, 0.05, 0.10, 0.20, 0.30 and 0.40. Upstream from the bump, there is a region capable of generating disturbances that
travel downstream, interacting with the bump. For each height, a different base flow was generated, as well as for each
Mach number on the subsonic and transonic regimes, 0.1, 0.3, 0.6, 0.7, 0.8 and 0.9. For each base flow, it was introduced
a sinusoidal two-dimensional T-S wave with constant amplitude and frequency.
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1. INTRODUCTION

In the aeronautical industry, structures similar to small bumps on a smooth surface, or an isolated roughness on a
flat plate, are commonly present on aircraft surfaces, and can influence the drag coefficient if there is transition to the
turbulent regime in the boundary layer. Even with a relatively small influence, preventing multiple sources like these is an
interesting study that can be beneficial in saving fuel and operating costs.

The boundary layer transition is a process that can be initiated by instabilities. There is a large number of factors
that influence on transition, several of which are interdependent. The study of each aspect individually promotes a better
understanding of the complete mechanism and allows predictive modeling of phenomena, a great advantage in the aero-
nautical industry. In boundary layer flows, transition is often caused by primary instabilities and, as a consequence, the
amplification of secondary instabilities. For small Mach numbers, the main primary instability source of these flows is
the two-dimensional TS wave.

Through Direct Numerical Simulations (DNS), the objective of the current work is to investigate the effects of two-
dimensional TS waves over a flat plate with a two-dimensional isolated roughness element immersed in a compressible
laminar boundary layer flow.

2. REVIEW

Early works investigated roughness elements and isolated imperfections on the surface of airfoils with zero pressure
gradient or flat plates as factors that promoted transition from laminar to turbulent flow. Wind tunnel experiments from
Fage (1943), Tani (1961, 1969) and those shown in the review by Dryden (1953) indicated that a smoother surface
influenced in the conservation of stability in a laminar boundary layer. Therefore, to conserve laminar flow it was of great
importance to establish the highest height h of the structures that could be tolerated without influencing the transition.
For some combinations of roughness height-thickness ratio dependent, stream speed and location of roughness element,
it was also determined that, for higher flow speeds, the distance between roughness and the transition point was gradually
reduced.

On studies about two-dimensional roughnesses with disturbances, such as Klebanoff and Tidstrom (1972), Dovgal and
Kozlov (1990), Morkovin (1990) and Worner et al. (2003), it was concluded that the flow region modified by the presence
of the roughness is more sensitive to destabilizing influences. The degree of instability was dependent on the velocity
profile and its interaction with the roughness geometry. The presence of waves with small oscillation amplitudes in the
roughness region, around 1% of the velocity on the outer edge of the boundary layer Uy, already proved strong influence
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on transition.

In stability theory for compressible flows, the primary interest is in unstable rather than neutral waves (Mack, 1987).
The maximum spatial amplification rate as a function of Mach for 2D waves indicates that the second and higher modes
are most unstable as 2D waves, because they depend on the thickness of the relative supersonic region, but the first mode
is most unstable as an oblique wave at all supersonic Mach numbers. For lower Mach numbers, an oblique wave can have
an amplification rate several times larger than a 2D wave. For M < 2.4, an oblique first-mode wave is even more unstable
than a 2D second-mode wave. For Dunn and Lin (1955) as the Mach Number increases, three-dimensional disturbances
become significant under conditions that are less and less extreme, until finally, at a Mach Number between one and two,
they begin to play the leading role in many cases of practical interest.

Results in Lees (1947) and Lees and Reshotko (1962) indicate that, for the laminar boundary layer flow, the minimum
critical Reynolds number decreases from its Mach number zero value, reaches a minimum somewhere around M = 3 and
then increases again. In Criminale et al. (2018), it is shown that up to M = 1.6, the neutral stability curve is quite similar
to the incompressible case, but at higher values of the Mach number the upper branch turns upward toward the inviscid
limit. As pointed out by Mack in his calculations, inviscid disturbances begin to dominate at M/ = 3 and the stability
characteristics are more like those of a free shear layer than of a low-speed zero-pressure gradient boundary layer.

3. METHODOLOGY

The numerical simulations were performed by a DNS for the compressible Navier-Stokes equations, developed by the
Group of Aeroacoustics, Transition and Turbulence (GATT) of the Department of Aeronautical Engineering of the Sao
Carlos School of Engineering, University of Sdo Paulo (EESC-USP). The main works that present the development and
validation of the DNS can be found in Bergamo (2014), Gaviria Martinez (2016), Mathias (2017), Mathias and Medeiros
(2019).

In this work, the fourth order Runge-Kutta method is used for time marching. For the spatial derivatives, a sixth order
compact spectral-like finite differences shown by Lele (1992) is used. The pre processing is done in MATLAB and the
main processing is written in FORTRAN.

The governing equations were defined in a two-dimensional domain (z, y), and time (t), in terms of density (p), the two
velocity components (u, v), and internal energy (e). The values presented here are non-dimensional, by the characteristic
velocity at the outer edge of the boundary layer (Up), the boundary layer displacement thickness at the roughness position
(6%,) and initial density (po).

For the boundary conditions, the inflow boundary is defined as an uniform flow at constant temperature and the pressure
derivative is zero. In the outflow, pressure is kept constant and the second derivative is null for the other variables. The
outer flow condition on the wall-normal direction sets the second derivative of all variables to zero.
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Figure 1. Illustration of the domain (non-dimensional)

For the walls, including the roughness, there are no-slip and no-penetration conditions for velocity, the pressure gradi-
ent is zero in the normal direction and the temperature is fixed. From x = —50 to z = 0 there is a free-slip region in the
wall, necessary to accommodate the flow before the boundary layer starts forming.

A rectangular roughness placed on a flat plate, according to Fig. 1. Upstream from the roughness, there is a region
capable of generating disturbances that travel downstream, interacting with the roughness.

Some flow parameters were taken from the experimental works by de Paula (2007) and de Paula et al. (2017), such
as: Reynolds number in the position of the wave source Res: . = 700, Reynolds number at the roughness position
Res: = UsoO1,r /v = 950, roughness diameter d = 10 mm and displacement thickness at the experimental roughness
location §3 = 0.55 mum.
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Five different bumps were defined by their height, proportional to the boundary layer displacement thickness at the
position of the center of the bump on the smooth plate, that is, 65 = 0.05,0.10, 0.20, 0.30 and 0.40. The initial condition
is a Blasius boundary layer at constant temperature and pressure. The characteristic Reynolds number is Re = 950.

The meshes are Cartesian and initially uniform, which can be stretched in certain regions, increasing the density of
nodes as needed, as seen on Fig. 2 and 3. For the flows with the roughness element, the mesh is refined in the = direction
around the roughness region. In the y direction it is refined on the boundary layer region, and extra refined around the
height of the roughness.
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Figure 2. Mesh spacing (stream-wise direction)
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Figure 3. Mesh spacing (wall-normal direction)

The buffer zone consists of the region from = 500 to the end of the mesh, which is included to avoid problems in
the simulation, such as reflections in the domain. In y, there is a region with an intense refinement along the height of the
roughness, from y = 0 to y = 0.4. The buffer zone starts at y = 16 and ends at the last node.

4. RESULTS

The results will be presented for M = 0.1,0.3,0.6,0.7,0.8 and 0.9. For each Mach number, a different base flow was
generated for the flat plate and for the each plate with an isolated roughness, for comparison. Then, for all the base flows,
it was introduced a sinusoidal two-dimensional TS with constant amplitude and frequency.

4.1 Base Flow

The simulation of flat plate with roughness has a maximum relative error close to the order of 10~!2, an adequate
value for a base flow simulation for the following analysis. Using the equations in Schlichting and Gersten (2017), the
displacement and momentum thickness of the boundary layer, §* and 6, respectively, were calculated and are shown in
Fig. 4 and 5.

The roughness effects are proven to be mostly local, deforming the boundary layer both downstream and upstream,
but seem to expand downstream from the element as the Mach number grows. For higher M, these values do not return
to the flat plate values within the physical domain. It seems that the roughness height effects remain similar as the M
changes. The distortion is also greater in value for 6 as the Mach number grows, the opposite of what is shown for §*. The
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curve format changes noticeably specially for § from the increasing M, and as from M = 0.8, the height also contributes
to this.

As the Mach number increases, as well as bump height, the boundary layer parameters take longer longitudinal dis-
tances to return to flat plate values. In some cases, particularly for every height at M = 0.9, it does not happen within the
bounds of the regular domain, x = 500.
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Figure 4. Base flow displacement thickness
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Figure 5. Base flow momentum thickness

4.2 Disturbed Flow

A sinusoidal two-dimensional TS wave was generated at the source with an amplitude within the linear regime and
non-dimensional frequency F' = 90 x 10~°, defined as shown in Fig. 6. The amplitude at the wave source had different
values for each Mach number, with the intent of keeping the simulations within the linear regime.
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This TS wave is a monochromatic excitation disturbance of the wall velocity u, periodic in both time and z, covering
the most unstable band downstream from Reg« = 950.

(@) ' ' ' ' __®

’U,, |wa,ll
’U,, |wall

0 10 20 30 40 50 60 70 160 165 170 175 180 185
t x

Figure 6. Monochromatic TS wave signal at the wall

4.2.1 The Effect of the Bump Height

Figure 7 shows the amplitude change caused by bumps of different heights. The amplification factor relative to
the smooth surface is also shown for better visualization. The Mach number is M = 0.1 and the TS frequency is
F =90 x107°.

(a) M=01]F=90x10"° (b)
0.025 . . . . 3.5 —— . .
(I
(I
0.02 o O (. 1
g I
g [
5 0.015 £25¢ Do
£ s Lo
— ~
= 001} g 2r -
= Lo
S L
0.005 =15 —
I
0 R N B I ‘ L ; ] ]
250 300 350 400 450 500 250 300 350 400 450 500
X X
Smooth hr = 0.05 hr = 0.10 hr = 0.20 hr = 0.30 hr =040 — — —Bump

Figure 7. Amplitude evolution of the TS mode for different bump heights at M/ = 0.1

The TS amplitude increases with the bump height, as it was already shown by Worner ef al. (2003). For smaller
bumps, up to hr = 0.1, the amplitude change is relatively small, being very similar to the smooth plate case.

As the amplitude change varies considerably with height, it would be better to understand the problem with another
approach rather than comparing the amplitude. For another perspective, the growth rates of these curves are plotted on
Fig. 8. Calling the maximum absolute amplitude |@'|,,q. of simply A, the growth rate of this variable would be given as
GR = (dA/dz)/x.
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Figure 8. Growth rate change caused by bumps with different heights compared to the smooth plate at M = 0.1
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The growth rate reaches a maximum over the plate even if no bump is present and then decays. The bump inclusion
affects the growth rate locally and its maximum magnitude depends on height, but downstream the growth rate returns to
that observed in the smooth plate. Moreover, the plate location where it occurs seems to be the same regardless of height.
Thus, the region where growth rate differs from that of the smooth plate can be associated as the region of influence of
each bump itself.

4.2.2 The Effect of Mach

The same analysis from previous section is now extended by comparing the results of low Mach regime, M = 0.1, to
that obtained for 0.3,0.6,0.7,0.8 and 0.9. The effect of bump height change at these Mach numbers are shown in Fig. 9
comparing the smooth case to each bump height.
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Figure 9. Amplitude evolution of the TS wave

For heights up to hgp = 0.10 the amplitude change is still small, with their evolution mainly following that of the
smooth plate. For higher h g, the amplitude change is quite different from the smooth one. In this scenario, as the Mach
grows, the maximum amplitude values become smaller, indicating that the mode associated with this frequency becomes
more stable. As the height also increases, the amplification in comparison with the smooth plate also grows, specially for
the transonic cases.
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Figure 10. Amplitude evolution of the TS wave, normalized by the smooth plate amplitude
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In Fig. 10 the amplitude factor relative the smooth plate is also plotted grouping all bump heights. At the subsonic
regime, the amplitude factors are very similar, slightly decreasing with increasing Mach. But at transonic speeds, the
opposite effect seems to occur, and the amplitude factors dramatically increase, specially at M = 0.9.

The growth rate is also investigated and results are presented in Fig. 11. It shows the region of bump influence has
only small changes caused by compressible effects for subsonic regime, but for the transonic cases this influence region
becomes much longer.
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Figure 11. Growth rate change caused by bumps with different heights compared to the smooth plate

Since the chosen velocity component for the source disturbance is u, for it is a dipole wave with less acoustic emissions,
it exhibits results with smaller oscillations. Despite that, some oscillations are present for M = 0.6,0.7 and 0.8. This
indicates a peculiarity around the beginning of the transonic range.

5. CONCLUSIONS

Through Direct Numerical Simulations, this work investigates the boundary layer stability of a sinusoidal two-dimensional
Tollmien-Schlichting waves over a flat plate and plates with a two-dimensional isolated roughness element, immersed in
a compressible laminar boundary layer flow.

The influence of Mach number on the effect of a bump on the TS wave evolution has not been yet addressed systemat-
ically. Here, it was found that for bump heights below 10%, the effect was comparatively negligible. Above it, the effect
of the bump increased with both Mach, being more extensive in the stream-wise direction downstream from the bump,
and with height, promoting greater amplification factors for taller bumps.

However, the effect at the roughness location itself is relatively small. The Mach effect is mostly a consequence of the
downstream region affected by the bump, which increases substantially, in particular when approaching the supersonic
regime.
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