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Abstract. A laminar flow is always subject to small disturbances that can occur due to several factors, such as structural
vibration, surface roughness, noise, external turbulence, etc. If these disturbances are not dampened, the laminar flow
evolves into a more complex state but not necessarily a turbulent state. This process, known as the laminar-turbulent
transition, is extremely complex and not completely understood, especially for non-Newtonian fluid flows. A complete un-
derstanding of the transition process, with consequent ability to control, would open up great perspectives in science and
industry. Hydrodynamic stability analysis is carried out with this objective. In the boundary layer, the transition can occur
due to the convection of Tolmien-Schlichting waves. Thus, the objective of this work is to investigate the hydrodynamic
stability in a two-dimensional, incompressible and isothermal flow of a Giesekus viscoelastic fluid over a flat plate through
the analysis of Tollmien-Schlichting wave convection using the Linear Stability Theory.
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1. INTRODUCTION

Knowledge of the flow regime, be it laminar, transitional or turbulent, is necessary for the correct design of aerody-
namic surfaces or cooling systems (Souza et al., 2005). In many scientific and industrial applications, the stability of
laminar flow and the transition to turbulence are relevant (Brandi et al., 2019). Therefore, it is essential to investigate the
physics of stability and the laminar-turbulent transition to control, advance or prevent it (Gervazoni, 2016).

Due to the great need of the industry to simulate viscoelastic fluid flows and the great complexity of treating this type
of problem, an enormous amount of resources have been invested in the development of new technologies and numerical
methods capable of predicting, at low costs and with good results, the behaviour of these flows. One of the focuses of
interest is to predict complex phenomena that can result from viscoelastic behaviour, for example.

For any flow, the transition to turbulence can be generalized as the result of the amplification of disturbances injected
into the flows by different sources. The physical form of the generation of instabilities from a disturbance will depend
on the flow type. It may be related to several factors, such as structural vibration, surface roughness, noise, and external
turbulence, among others. If these disturbances are not dampened, the laminar flow undergoes a transition to another more
complex state, but not necessarily a turbulent flow state (Souza et al., 2005). The relationship between the disturbance and
the transition process to the turbulent regime of a flow is part of the investigation of the hydrodynamic stability (Zhang
et al., 2013).

In particular, non-Newtonian laminar boundary layer flows are observed in several domains, including biological and
chemical systems, food processing engineering systems or pharmaceutical processing (Amoo and Fagbenle, 2020). Since
most of the differences between categories of non-Newtonian fluids are related to their viscosity, a dominant physical
property within the boundary layer region, a thorough understanding of these flows is of considerable importance for
various industrial applications (Amoo and Fagbenle, 2020).

A paradox was encountered when stability theory researchers realized that a laminar boundary layer transitioned to tur-
bulence, even though its stability was theoretically guaranteed due to the inexistence of inflexion points. The researchers
noticed the propagation of waves in the boundary layer, which became known as Tollmien-Schlichting waves.

Therefore, this work uses the Linear Stability Theory to investigate the convection of Tollmien-Schlichting waves in
a boundary layer flow over a flat plate, considering a viscoelastic fluid from the Giesekus model. Different cases were
tested by varying the dimensionless parameters that characterize non-Newtonian fluids to analyze how elastic forces and
the polymeric contribution of the fluid can influence the spatial stability of viscoelastic flow and compare them with
Newtonian fluid flows.
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2. MATHEMATICAL FORMULATION

The flow is assumed to be unsteady, non-Newtonian, two-dimensional and incompressible. The conservation of mass
(continuity) and conservation of momentum equations governing the flow, in the dimensionless form, are given by

∇ · u = 0, (1)

∂u
∂t

+∇ · (uu) = −∇p+
β

Re
∇2u +∇ · T, (2)

where u denotes the velocity field, t is the time, p is the pressure and T is the non-Newtonian extra-stress tensor (symme-

tric), given by T =

[
T xx T xy

T xy T yy

]
.

The dimensionless parameter Re = U∞L/ν is associated with the Reynolds number, where L and U∞ denote length
and velocity scales, respectively, and ν is the kinematic viscosity of the fluid. The amount of Newtonian solvent is
controlled by the dimensionless solvent viscosity coefficient β = ηs/η0, where η0 = ηs + ηp denotes the total shear
viscosity, being ηs and ηp the Newtonian solvent and polymeric viscosities, respectively.

In this paper, we worked with viscoelastic fluid flow governed by the non-linear Giesekus constitutive equation
(Giesekus, 1982), which is given by

T +Wi
▽
T + αG

WiRe

1− β
(T · T) =

1− β

Re
(∇u +∇u⊤), (3)

where αG is the mobility parameter that regulates the shear thinning behavior of the fluid (0 ≤ αG ≤ 1), T · T is a tensor

product and
▽
T is the upper-convected derivative. The dimensionless parameter Wi = λU∞/L is called Weissenberg

number, being λ the relaxation-time of the fluid.

3. LINEAR STABILITY THEORY

Linear Stability Theory assumes that instantaneous flow can be decomposed into a base and disturbed flow. In parti-
cular, in this work, we consider the non-parallel base flow,

u(x, y, t) = U(x, y) + ũ(x, y, t), p(x, y, t) = P (x, y) + p̃(x, y, t), T(x, y, t) = T̂(x, y) + T̃(x, y, t),

where for a two-dimensional flow, u = (u, v), U = (U, V ), ũ = (ũ, ṽ), T = (T xx, T xy, T yy), T̂ = (T̂ xx, T̂ xy, T̂ yy)
and T̃ = (T̃ xx, T̃ xy, T̃ yy), and the disturbances can be written generally as

ũ = u(y)ei(αx−ωt), p̃ = p(y)ei(αx−ωt), T̃ = T(y)ei(αx−ωt),

where i =
√
−1, u = (u, v) and T = (T

xx
, T

xy
, T

yy
). These equations indicate that disturbances propagate as waves

with frequency ω, wave-length λ = 2π/α, wave velocity c = ω/α, where α is the wave number in the x direction,
and amplitudes u, p and T. Thus, using the separating variables method by normal modes, the system composed of
conservation equations and non-Newtonian tensor equations is reduced to a system of differential equations (Furlan,
2018),

iαu+
dv

dy
= 0, (4)

(
−iω +

∂U

∂x

)
u+ V

du

dy
− β

Re

d2u

dy2
+

∂U

∂y
v − dT

xy

dy
=

(
−αiU − β

Re
α2

)
u− αip+ αiT

xx
, (5)

∂V

∂x
u+

(
−iω +

∂V

∂y

)
v + V

dv

dy
− β

Re

d2v

dy2
+

dp

dy
− dT

yy

dy
=

(
−αiU − β

Re
α2

)
v + αiT

xy
, (6)

Wi
∂T̂ xx

x
u− 2WiT̂ xy du

dy
+Wi

∂T̂ xx

∂y
v +

(
1 +Wi

(
−iω + 2

∂U

∂x

)
+ αG

WiRe

1− β
2T̂ xx

)
T

xx
+WiV

dT
xx

dy
+

+

(
−2Wi

∂U

∂y
+ αG

WiRe

1− β
2T̂ xy

)
T

xy
=

(
2WiαiT̂ xx + 2

1− β

Re
iα

)
u−WiUiαT

xx
, (7)
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Wi
∂T̂ xy

x
u−

(
WiT̂ yy +

1− β

Re

)
du

dy
+Wi

∂T̂ xy

∂y
v +

(
−Wi

∂V

∂x
+ αG

WiRe

1− β
T̂ xy

)
T

xx
+

+

(
1−Wiωi+ αG

WiRe

1− β
(T̂ xx + T̂ yy)

)
T

xy
+WiV

dT
xy

dy
+

(
−Wi

∂U

∂y
+ αG

WiRe

1− β
T̂ xy

)
T

yy
=

=

(
WiαiT̂ xx +

1− β

Re
iα

)
v −WiUiαT

xy
, (8)

Wi
∂T̂ yy

x
u− 2

(
WiT̂ yy +

1− β

Re

)
dv

dy
+Wi

∂T̂ yy

∂y
v +

(
−2Wi

∂V

∂x
+ αG

WiRe

1− β
2T̂ xy

)
T

xy
+

+

(
1 +Wi

(
−iω − 2

∂V

∂y

)
+ αG

WiRe

1− β
2T̂ yy

)
T

yy
=
(
2WiαiT̂ xy

)
v −WiUiαT

yy
. (9)

3.1 Numerical Method

In particular, for two-dimensional perturbations, if ω (ωi = 0 and ω = ωr) is a real number and α is a complex
number, then the perturbation amplitude is increasing in the direction of the mean flow x. The components ωr, αr and αi

represent, respectively, the frequency, the wave number and the spatial amplification rate, in which case the formulation
is called a spatial formulation.

Now, if α is a real number and ω is a complex number, we have the perturbation amplitude increasing as a time
function. In this case, the formulation is called the temporal formulation, and ωi is the temporal amplification rate. The
classification of instabilities, depending on the temporal and spatial analyses, is presented in Tab. 1.

Table 1. Instabilities classification.

Type of analysis Amplification rate Amplitude Classification

Spatial analysis
αi < 0 increase unstable
αi = 0 constant neutral
αi > 0 decreases stable

Temporal analysis
ωi < 0 decreases stable
ωi = 0 constant neutral
ωi > 0 increase unstable

In this work, the spatial analysis is performed considering the system composed by the conservation Eqs. (4) – (9),
from which it is possible to write the following system

M[u αu v αv p T
xx

T
xy

T
yy
]⊤ = αQ[u αu v αv p T

xx
T

xy
T

yy
]⊤, (10)

where M and Q are matrices constructed in such a way that the Eq. (10) is equivalent to the system composed by
Eqs. (4) – (9). Thus, the instability modes are obtained by solving an eigenvalue problem, for which the first and second
ordinary derivatives with respect to y are calculated using differentiation matrices based on the Chebyshev polynomial
(Don and Solomonoff, 1995).

3.2 Base Flow

We consider the Blasius solution (Schilichting, 1979) to calculate the base flow. A direct numerical simulation is
performed using the velocity and vorticity components from the Blasius solution as initial conditions to eliminate possible
inconsistencies and obtain the values U, V, T̂ xx, T̂ xy and T̂ yy .

In the direct numerical simulation, to simplify the problem and eliminate the pressure treatment in the momentum
equations, we chose the vorticity-velocity formulation (Brandi et al., 2017). Then, the two-dimensional vorticity ωz is
defined by

ωz =
∂u

∂y
− ∂v

∂x
. (11)

Applying such formulation, therefore, the direct numerical simulation code resolves the system composed by Eqs.
(12) – (17),



B. L. Carreira, L. F. Souza and A. C. Brandi
Stability Analysis of Viscoelastic Fluid Flows in Boundary Layer

∂U

∂x
+

∂V

∂y
= 0, (12)

∂2V

∂x2
+

∂2V

∂y2
= −∂ω̂z

∂x
, (13)

∂ω̂z

∂t
+

∂ω̂z

∂x
U +

∂ω̂z

∂y
V =

β

Re

[
∂2ω̂z

∂x2
+

∂2ω̂z

∂y2

]
− ∂2T̂ xy

∂x2
− ∂2T̂ yy

∂x∂y
+

∂2T̂ xx

∂y∂x
+

∂2T̂ xy

∂y2
, (14)

T̂ xx +Wi

(
∂T̂ xx

∂t
+ U

∂T̂ xx

∂x
+ V

∂T̂ xx

∂y
− 2T̂ xx ∂U

∂x
− 2T̂ xy ∂U

∂y

)
+ αG

WiRe

1− β

(
T̂ xx2

+ T̂ xy2
)
=

= 2
1− β

Re

∂U

∂x
, (15)

T̂ xy +Wi

(
∂T̂ xy

∂t
+ U

∂T̂ xy

∂x
+ V

∂T̂ xy

∂y
− T̂ xx ∂V

∂x
− T̂ yy ∂U

∂y

)
+ αG

WiRe

1− β

(
T̂ xy

(
T̂ xx + T̂ yy

))
=

=
1− β

Re

(
∂V

∂x
+

∂U

∂y

)
, (16)

T̂ yy +Wi

(
∂T̂ yy

∂t
+ U

∂T̂ yy

∂x
+ V

∂T̂ yy

∂y
− 2T̂ xy ∂V

∂x
− 2T̂ yy ∂V

∂y

)
+ αG

WiRe

1− β

(
T̂ xy2

+ T̂ yy2
)
=

= 2
1− β

Re

∂V

∂y
, (17)

where Eq. (12) is the continuity equation, Eq. (13) is the Poisson equation for the V velocity component, obtained
deriving Eq. (11) with respect to x. Equation (14) is obtained by deriving the momentum equation in direction y
with respect to x and subtracting the derivative of the momentum equation in direction x with respect to y. Finally,
Eqs. (15) – (17) are the Giesekus model equations for the non-Newtonian tensor in two-dimensional cartesian coordi-
nates.

4. NUMERICAL RESULTS

The following results were obtained through the Linear Stability Theory from a base flow generated in a Direct
Numerical Simulation from the Blasius solution. In order to investigate the hydrodynamic stability of the flow, the
simulation considered U∞ = 15.90m/s, L = 0.1m and ν = 1.59 × 10−5m2/s, resulting in a Reynolds number
Re = 100000.

For base flow, the domain of numerical integration extends from x0 = 1.0 to xmax = 4.22 in the streamwise direction
and from y0 = 0 to ymax = 0.77 × 10−1 in the normal direction. The following parameters were adopted for the
numerical simulation: the number of points in the streamwise and normal directions are imax = 537 and jmax = 129,
respectively, being the distance between two consecutive points in the direction x, ∆x = 0.006. Discretization in the y
direction was performed using a mesh with a stretch factor of 10%.

Figures 1 and 2 represent the boundary layer profile obtained in non-Newtonian fluid flow for variations of
β = 0.90, 0.70 and 0.50, with αG = 0.30 fixed and Wi = 1 and 10. To verify the effect of the non-Newtonian
contribution, the non-Newtonian profile is shown in comparison with the same profile in the Newtonian fluid flow. There-
fore, in Figs. 1(a) and 2(a), the boundary layer velocity profile U at the streamwise position x = 3.148 was shown as a
function of the dimensionless coordinate

η = y

√
U∞

νx
.

In addition, Figs. 1(b) and 2(b) contain the relative variation between the non-Newtonian solution and the Newtonian
solution. The variation calculation was performed as follows

EU =
UnNewt − UNewt

UNewt
,

where UNewt and UnNewt represent Newtonian and non-Newtonian solutions, respectively. It can be noted that the
velocity in the boundary layer is higher in the non-Newtonian case and increases as β decreases. Also, the greatest
variation appears near the wall.
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Figure 1. Comparison between velocity profiles in the boundary layer for Wi = 1.
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Figure 2. Comparison between velocity profiles in the boundary layer for Wi = 10.

Comparing the results obtained for Newtonian and non-Newtonian flows, a variation of the constants that characterize
the viscoelastic fluid is performed to verify these dimensionless parameters influence on the flow’s stability. The parameter
αG was fixed at 0.30 and so we changed β = 0.50, 0.70 and 0.90 to Wi = 1, 5, 10 and 25. Numerical simulations
provided the values of the spatial amplification rates αi for each case. As a spatial analysis, amplification rates less than
zero (αi < 0) characterize flow instability and amplification rates greater than zero (αi > 0) characterize stability.

In that sense, Fig. 3 presents the spatial growth rate (−αi) as a function of the frequency ω, where it can be easily
verified that non-Newtonian flows reach a higher amplification rate in relation to Newtonian flow, and this is more evident
as the value of β decreases, that is when there is a more significant non-Newtonian contribution in the fluid. The same
happens when the value of the Weissenberg number, Wi, is increased.

Another important observation is that there is a more significant influence with the variation of Wi in fluids with a
more significant polymeric contribution. Furthermore, for these cases, when β decreases, the range of unstable frequencies
increases as the frequency at which the flow returns to stabilize increases.
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Figure 3. Amplification rate of disturbances considering β variations with: (a) Wi = 1; (b) Wi = 5; (c) Wi = 10 and
(d) Wi = 5.

5. CONCLUSIONS

In this work, the Linear Stability Theory was used to investigate the hydrodynamic stability in a boundary layer flow
over a flat plate, considering a viscoelastic fluid of the Giesekus type. In order to evaluate the spatial amplification rates
of the disturbances, different simulations were performed, varying the dimensionless parameters that characterized the
non-Newtonian fluid flow and compared with Newtonian fluid results.

The results obtained allow us to verify that non-Newtonian fluis flows are more unstable than Newtonian fluid flows
since the variation of the constant β, which is directly related to the non-Newtonian contribution in the fluid, interfered in
the range of unstable frequencies of the flows, and flows with lower values of β reach the highest amplification rates.

Through the Weissenberg number variation, it was also possible to analyze the effect of elastic forces on the flow
stability, in the sense that the increases in Wi were able to significantly influence the flow stability, especially in fluids
with a higher polymeric contribution.
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