
 
 
 

13th Spring School on Transition and Turbulence 
September 19th-23rd, 2022, Blumenau, SC, Brazil 

 

EPTT-2022-0029 

ANALYSIS OF THE LEAST STABLE EIGENVALUES IN THE 

TRANSITION FROM VORTEX-INDUCED VIBRATIONS TO GALLOPING  

 
Victor Hugo Santiago Peron 

Daiane Iglesia Dolci 

Bruno Souza Carmo 
Escola Politécnica da Universidade de São Paulo. Av. Professor Mello Moraes, 2231, Cidade Universitária, São Paulo - SP 

victor.peron@usp.br 

dolci@usp.br 

bruno.carmo@usp.br 

 

Abstract. This works aims at performing linear stability analysis of fluid-structure interactions systems, focusing on 

aeroelastic bodies subject to vortex-induced vibrations, transverse galloping and pre-galloping. First, the physical 

phenomena behind these coupled instabilities are described, and the problem is set up to acknowledge the development 

of VIV and galloping in current fluid mechanic simulations. We take advantage of the moving frame of reference 

technique, allowing the rigid motion of the mesh, as well as the spectral\hp element discretization, to develop a solver 

that combines this high-order finite element method providing solutions with low numerical errors. We perform 

numerical nonlinear simulations of the flow around elastically mounted square cylinders to investigate the behavior of 

the coupled system and evaluate the system response with the variation of flow parameters (such as Reynolds number) 

and structural parameters (such as reduced velocity). Also, the methodology for modal stability analysis of the coupled 

systems is defined, and numeric simulations are carried out to obtain complementary sets of the leading eigenvalues 

responsible for the magnitude and oscillatory responses of these systems. These eigenvalues are determined as the 

solution for the perturbed coupled Navier-Stokes and structural equations, presented in the form of direct modes. Then, 

with a complete set of parameters, responses and respective eigenvalues, the fluid-structure stability is discussed in terms 

of the flow and structure parameters and geometry. We provide bifurcation diagrams, as well as the direct flow fields 

for the evolution or decay of the perturbation energy in the system. 
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1. INTRODUCTION 

 

The study of fluid-structure interaction (FSI) is a multi-physics science that fuses the knowledge of fluid and structural 

mechanics, investigating how solid and fluid parts of a domain of interest interact with one another. Once it deals with 

complex mechanics and a great number of variables, FSI problems rely mostly on experiments and numerical simulations. 

There are many ramifications of FSI, depending on the class of the flow (internal or external), compressibility of the fluid, 

production of sound, the kind of movement from the solid, stiffness and geometry of the solid, among a lot of other 

variables. This study focusses on aeroelasticity, defined as FSI instabilities derived from aerodynamic forces. 

Cossu and Morino (2000), followed by Meliga and Chomaz (2011), provided linear stability analysis for an elastically 

mounted circular cylinder and analyzed the 2 main eigenvalues, defined as Fluid Mode (FM) and Elastic Mode (EM). 

Next, Navrose and Mittal (2016) continued with the eigenvalue analysis of a circular cylinder under VIV and defined 

how the fluid mode and the elastic mode change with the variation of the mass ratio. For high values of mass ratio, there 

are two distinct FM and EM modes, each with independent behavior. On the other hand, for low mass ratio systems, both 

FM and EM interact, creating two fluid-elastic modes (FEMI and FEMII), and each one contributes more to the behavior 

of the system for specific ranges of reduced velocities. Also, contributing to the lock-in region analysis, Singh and Mittal 

(2005), proved that this region is characterized by a proximity between the vortex-shedding and the cylinder natural 

frequencies. 

Dolci (2020) extended this analysis for the moving frame of reference using the Spectral/hp discretization technique, 

validating the study of Navrose and Mittal (2016) in this particular framework and included the background for nonlinear 

simulations. 

Li et al (2019) extended the eigenvalue analysis for the galloping instability and found that, for that case, there must 

always be a fluid-mode that remains stable (FMI), and the EM interacts (for low mass ratio systems, decoupled) with a 

second fluid mode, FMII. Also, they verified that SM turns unstable inside the lock-in region and remains nearly constant 

for the entire pre-galloping and galloping regime. It proves that, in the pre-galloping state, FMI is still the greatest 
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contributor to the system and the instability of SM still does not play such a decisive role. Also, in the galloping regime, 

they showed that the main responsible for the dynamics of the system is the instability of SM. 

The present work seeks to extend the work of Li et al (2019), providing VIV and galloping analysis for systems with 

lower and higher values of Reynolds numbers, seeking to investigate the response of the SM mode dynamics and its 

relationship with the aeroelastic stability.  

The next section will cover all the theory behind these aeroelastic instabilities, the non-inertial frame of reference used 

and the modal stability analysis. In section 3, the methodology will be discussed and all the tools to perform the analysis 

will be demonstrated. Later, the results will be presented.  

 

2. PROBLEM FORMULATION 

 

2.1 Fundamentals 

 

Vortex-induced vibrations is a fluid-structure instability that is triggered by vortex shedding loads, leading to 

vibrations. Some of the distinct characteristics of VIV is that it happens in a range, with a specific starting and ending 

point, and that it can indeed occur in circular cylinders (while other fluid-induced vibrations such as galloping cannot). 

This instability range, which is close to the natural frequency of the structure 𝑓𝑛 and is named lock-in region, will be 

further explored in section 2.3. 

Vortex shedding generates a time-periodic pressure distribution variation in both upper and lower boundaries, as seen 

in Figure 1. Once the instantaneous pressure distribution is generally not symmetric, it is possible to infer that there is an 

equivalent oscillating lift force occurring in the body, defining a self-lift mechanism. Also, the event of vortex shedding 

is seen in a range of fluid velocities and have different laminar and turbulent characteristics.  

 

 

 

Figure 1 - Sequence of surface pressure fields and wake patterns in different time-steps. Extracted from Blevins (1990) 

 

The event of transverse galloping is schematically shown in Figure 2, which shows the flow response to a vertical 

perturbation. Consider a generic bluff body under crossflow that slowly starts vibrating and has a downwards vertical 

velocity �̇�. If the geometry is fixed the flow is responsible for generating the aerodynamic forces. However, when the 

bodies undergo a small perturbation motion generating a transverse velocity, it also contributes to the final forces. The 

reason behind it is due to the relative velocity Urel = U + ẏ that is responsible for generating the fluid forces. Note the 

spring of stiffness 𝑘 and the damping coefficient 𝑐 used to generically demonstrate the attachment of the body to a fix 

reference.  

Galloping is a self-excited instability that generates a bifurcation point, unlike VIV, therefore it only has a starting 

point, and the instability does not cease with the increment of the flow parameters (such as Reynolds number or reduced 

velocity). 

 



13th Spring School on Transition and Turbulence 
September 19th-23rd, 2022, Blumenau, SC, Brazil 

 

 

Figure 2 - Generic convex body in the onset of Galloping 

 

Both VIV and transverse galloping are governed by differential equations which, for the study of circular cylinders 

(VIV only), is defined as: 
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While, for square cylinders (containing both VIV and galloping): 
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In these equations, the 𝑦 terms and its time derivatives denote the position, velocity and acceleration of the body, 𝐹𝑦 

denotes the vertical non-dimensional force per unit span, ζ denotes the damping ratio and, finally, 𝑈𝑅 and 𝑚∗ defines the 

FSI main dimensionless parameters, the reduced velocity and the mass ratio. 

 

The mass ratio, which describes the differences between equation (1) and (2), is the relation between the mass of the 

solid and the displaced mass of fluid and it is defined as 𝑚∗ =
𝑚�̃�

𝑚�̃�
=

4𝑚�̃�

ρ̃π𝐷2̃ for a circular cylinder and 𝑚∗ =
𝑚�̃�

𝑚�̃�
=

𝑚�̃�

�̃�ℎ̃2 for 

square prisms, considering 𝑚�̃� and  𝑚�̃� the dimensional mass of the solid and the fluid, �̃� the fluid density, ℎ̃ the square 

side and �̃� the circular cylinder diameter. The reduced velocity, for both motions, is the relation between the free-stream 

velocity of the fluid and a characteristic velocity of the body, defined as 𝑈𝑅 =
𝑈0

�̃�𝑓𝑛
,  with �̃� being a characteristic length 

(ℎ̃ for square and �̃� for circular cylinder).  

 

2.2 Moving Frame of Reference 

 

The moving frame of reference, pioneered by Li, Sherwin and Bearman (2002), is a technique that allows the 

simulation of Fluid-Structure Interaction systems for rigid body motions by changing the frame of reference from an 

inertial absolute frame to the body reference (non-inertial). Let 𝑥𝑎,1 and 𝑥𝑎,2 be, respectively, the horizontal and vertical 

axis in the absolute frame of reference and 𝑥1 and 𝑥2 orthogonal axes in the moving frame of reference, standing with its 

origin in the the center of the body (since the body is not allowed to rotate in this study, there is no need to define the 

point as the shear center or the centroid). The transformation for each of the coordinate is defined as 𝒙 = 𝒙𝒂 − y and 

presented in Figure 3. The time derivative of the change of coordinates is equal to: 

 

𝒖 = 𝒖𝒂 − �̇�                                                                                                                                                                       (3) 
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Figure 3 - Moving Frame of Reference Mapping Scheme. Extracted from Dolci (2020) 

 

Proceeding with the motion of the body and transforming the Navier-Stokes equations from the absolute to the moving 

frame of reference, for the square cylinder analysis, the final coupled system for direct NS simulations is defined as: 

 
𝜕𝒖

𝜕𝑡
+ ∇𝒖 ∙ 𝒖 −

1

𝑅𝑒
∇2𝒖 + ∇𝑝 +

𝑑�̇�

𝑑𝑡
= 0                                                                                                                           (4a) 

 

∇ ∙ 𝒖 = 0                                                                                                                                                                       (4b) 
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Subjected to the boundary conditions of 𝒖 = 0 at the structure walls, equation (3) for the inlet and ∇𝒖 ∙ 𝒏 = 0 at the 

outlet.                                                                                                                       

 

2.3 Modal Stability Formulation 

 

Linearizing the system of equation (4) for all state variables 𝒒 = [𝑢, 𝑣, 𝑝, 𝑦, �̇�] considering a small perturbation of the 

form 𝒒 = 𝑸 + 𝒒′ where 𝑸 denotes the steady base flow variables and 𝒒′ a small perturbation, it is possible to arrive at a 

new set of equations to analyze the evolution of the perturbation using modal analysis. The complete set of equations for 

this work was developed by Dolci (2020). A modal stability analysis consists of an eigenvalue analysis of the linear 

operator of the FSI system L, assuming: 

 
(λ𝐈 − L)�̂� = 0 

 

Since stability FSI analysis seeks mainly for the onset of the instability, it is enough, in most cases, to evaluate only 

the least stable eigenvalues. The stability analysis used in this study has its eigenvalues determined using the Modified 

Arnoldi Method (defined in section 3.3) and provide the final solution approximated by normal modes, such as 𝒒′ = �̂�𝒆𝜆𝑡. 

The eigenvalue λ is an imaginary number of the form λ = λr + iλi where the real part determines the perturbation 

magnitude (its growth or decay), and the imaginary part defines the periodic oscillation. Therefore, to ensure stability, it 

is important to state that the growth is smaller than 1, since it is a multiplier of  �̂�. Therefore, for stability, 

 

M = eλr ,  
M = eλr < 1,   
ln M = ln eλr < ln 1,  
ln M = λr < 0   
 

So, the stability is ensured in a modal analysis if the least stable eigenvalues have a negative real part. As discussed 

by Li et al (2019), the interaction of the 3 least stable eigenvalues defines the stability for galloping. The final FSI coupled 

system for the linear stability analysis is defined by: 
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Subjected to the boundary conditions of �̂� = 0 in the inlet, ∇�̂� ∙ 𝒏 = 0 in the outlet and �̂� = 𝑦1̂  −  ∇𝐔φ in the 

structure wall, where 𝜑 is the small perturbation in the crossflow direction. It is important to state that, as developed by 

Dolci (2020), the correct evaluation of these equations must include an added stiffness term, which vanishes in this 

analysis due to the symmetry of the base flow and the assumption of a rigid body motion, which excludes alterations in 

the forces due to alterations in the geometry.                                                                                                                                          

 

3. METHODOLOGY 

 

3.1 Spectral/hp Element Method Disctretization 

 

Throughout this study, all numerical simulations are executed employing the spectral/hp element method (SEM), 

developed by Karniadakis and Sherwin (2005) which is a method for solving partial differential equations. This method 

is used to solve the Navier-Stokes equations and the coupled fluid-structure interaction problems. 

SEM is a method that unites techniques from two other numerical methods, the finite element method (FEM) and the 

spectral method (SM), in order to merge the benefits from both and to be able to solve numerical problems with high 

accuracy and less computational power. SEM merges both techniques in one, applying both the convergences h and p. 

Therefore, SEM also defines a discrete set of elements that represents the original geometry, and inside every element the 

behavior of the system is interpolated by a high-order polynomial basis. Different polynomial basis can be defined, but 

for numerical reasons it is convenient that the basis is at least approximately orthogonal. The most common basis used in 

SEM are the Jacobi polynomial basis and the Lagrange nodal basis. The present work is developed employing the Jacobi 

basis. 

 

3.2 Newmark-β Method 

 

Newmark-β is a method to solve second-order ordinary differential equations. This approach can assume two 

frameworks. In the first one, during a time-step Δt = tn+1 − tn the acceleration is assumed constant and in the second 

one as a linear function. The first case will be defined below, but the second can also be easily defined. This framework 

will generically adopt the variable 𝑥. 

Assuming a constant acceleration defined as the mean of the acceleration in both time-steps and integrating two times, 

the result is 

 

ẍ =
1

2
(xn+1̈ + xn̈),                                                                                                                                                              (11a) 

ẋ = xṅ +
t

2
(xn+1̈ + xn̈),                                                                                                                                                  (11b) 

x = xn + xṅt +
t2

4
(xn+1̈ + xn̈).                                                                                                                                       (11c) 

 

It is possible to define the velocity and position in the time-step tn+1 simply as 

 

ẋ𝑛+1 = ẋ𝑛 +
Δt

2
(ẍ𝑛+1 + ẍ𝑛+1),                                                                                                                                                   (12a) 

xn+1 = xn + ẋ𝑛Δt +
Δt2

4
(ẍ𝑛+1 + ẍ𝑛).                                                                                                                                   (12b) 

 

Defining the second case (linear acceleration) and the first case, it is possible to generalize the results as 

 

yn+1 = yn + δtyṅ +
δt2

2
[(1 − 2β)yn̈ + 2βyn+1̈ ],                                                                                                                 (13a) 

�̇�𝑛+1 = 𝑦�̇� + δ𝑡[(1 − γ)𝑦�̈� + γ𝑦�̈� + 1].                                                                                                                           (13b) 

 

Since in this work the first approach of constant acceleration is used, to ensure numerical stability it is employed  
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β =
1

4
 and γ =

1

2
. 

 

3.3 Arnoldi Method 

 

When trying to obtain the eigenvalues and eigenvectors of matrices, the two main classes of algorithms used are the 

classical QZ and the projection methods. For the purposes of this study, the second one is more interesting because the 

matrices are large but not explicitly assembled, and we are interested in a very small part of the spectrum only. Projection 

methods use less computational power, with the cost of not providing the full spectrum of eigenvalues. 

The Modified Arnoldi Method relies on the Krylov subspace to approximate the original matrix 𝐴 by a superior 

Hessenberg matrix Hm, close to triangular. The eigenvalues and eigenvectors of 𝐻𝑚 provide an accurate estimation of the 

least stable eigenvalues and eigenvectors of 𝐴. A complete understanding of this method can be found in Trefethen and 

Bau (1997). 

 

3.4 Mesh Validation 

 

To ensure the effectiveness of this study, a mesh convergence analysis was provided. Taking the example of the 

convergence in Li et al (2019), the first analysis was a comparison of the aerodynamic forces of a fixed square under 

flow. Two meshes were provided, denoted 𝑀𝐸𝑆𝐻1 and 𝑀𝐸𝑆𝐻2, both with external sizing −50ℎ̃ ≤ 𝑥, 𝑦 ≤ 50ℎ̃, with 

𝑀𝐸𝑆𝐻1 with 4407 elements and 𝑀𝐸𝑆𝐻2 with 4831. Table 1 provides a comparison with both meshes and a 𝑝 

convergence. 

 

Table 1 - p convergence analysis for fixed square 

Mesh Polynomial Order Strouhal %St CDmed %CDmed CLrms %CLrms Simulation Time (h) 

1 5 0.1425 0.52% 1.4547 1.37% 0.1799 0.66% 9.05 

1 6 0.1425 0.52% 1.4492 0.99% 0.1794 0.94% 11.74 

1 7 0.1425 0.52% 1.4466 0.81% 0.1795 0.88% 16.89 

2 5 0.1425 0.52% 1.4523 1.21% 0.1796 0.83% 9.87 

2 6 0.1425 0.52% 1.4478 0.89% 0.1793 0.99% 12.78 

2 7 0.1425 0.52% 1.4455 0.73% 0.1795 0.88% 18.35 

Ref - 0.1432 0.00% 1.435 0.00% 0.1811 0.00% - 

 

This analysis defined the polynomial order as 𝑃 = 6, since it is within 1% of the reference mesh. Next, to decide 

whether 𝑀𝐸𝑆𝐻1 or 𝑀𝐸𝑆𝐻2 is best suitable to the problem, a direct Navier-Stokes analysis was performed, considering a 

square cylinder under galloping with high amplitude. This was achieved considering the case studied by Robertson et al. 

(2003), considering 𝑅𝑒 =  250, ζ =  0.0037, 𝑈𝑅 = 40 and 𝑚∗ = 20. Figure 4 provides the comparison between both 

meshes and the reference. Since there is visible alteration in the nonlinear behavior between 𝑀𝐸𝑆𝐻1 and 𝑀𝐸𝑆𝐻2 and 

both predict the behaviour with good accuracy, 𝑀𝐸𝑆𝐻1 was defined as the final mesh due to its lower computational cost.  

 

 

Figure 4 - Convergence of both meshes with nonlinear simulation from Robertson et al. (2003) 
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4. RESULTS 

 

Li et al. (2019) defined the competition between the fluid and elastic modes for galloping analysis and defined that, 

in high mass ratio systems, the FMII mode and the SM mode are decoupled, which provides a clearer understanding of 

the mechanism of galloping. In those systems, the SM mode turns unstable while on the VIV regime and keeps unstable 

through the pre-galloping regime until galloping occurs. 

Taking that into consideration and taking a PSD analysis of pre-galloping systems, Li et al. (2019) concluded that the 

pre-galloping regime is an instability caused by FMI (also simply denoted FM mode, for decoupled systems), without 

interference from SM (despite SM being unstable already in pre-galloping). Galloping, on the other hand, is indeed caused 

only by the unstable SM mode.  

To evaluate these conclusions, this work first presents the results of direct Navier-Stokes simulations for a chosen 

range of Reynolds Numbers and evaluates the VIV and Galloping regimes. The chosen set of 𝑅𝑒 for these simulations 

are defined as 𝑅𝑒 =  {75, 100, 150, 200}, covering the main regions of the simulation.  𝑅𝑒 =  75 seeks a flow that is 

only susceptible to VIV, with no pre-galloping regime. 𝑅𝑒 =  100 aims in displaying simulations with a pre-galloping 

regime but without galloping, and both 𝑅𝑒 =  150 and 𝑅𝑒 =  200 displays regions in which galloping does indeed occur 

but, while the first has only 2D instabilities for a fixed square, the second would also contain 3D instabilities, according 

to Saha et al. (2003). However, since the 2D instabilities are dominant from the 3D for 𝑅𝑒 =  200 (once it is close to the 

neutral 3D stability), it is possible to assume 2D simulations in that case. Figure 5 displays the amplitude of oscillation 

for a range of reduced velocities. 

 

 

Figure 5 - Evolution of the amplitude of oscillation as a function of the reduced velocity for a range of Reynolds 

numbers 

 

Next, linear stability analysis were performed for the same set of Reynolds numbers, including the value of 𝑅𝑒 =
 180. This addition is intended to seek any differences in the behavior of the system in the 3D instability range. Figure 6 

shows the variation of the FM and SM modes in relation to a set of reduced velocities. 
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Figure 6 - Evolution of the real part of the 2 least stable eigenvalues for a range of Reynolds numbers 

 

 

Also, for the SMs that present Galloping, Figure 7 presents the variation of the eigenfrequencies λ𝑖/2π in relation to 

𝑈𝑅. 

 

 

 

Figure 7 - Evolution of the eigenfrequencies for the subset of Reynolds numbers that present galloping 

 

The results infer that, for a fixed mass ratio 𝑚∗ = 50 throughout the entire study (providing a decoupled analysis and, 

therefore, only the 2 least stable eigenvalues are considered to the description of the system), an increase of the Reynolds 

numbers indicates that the onset of galloping occurs for a smaller value of reduced velocity and reaches higher amplitudes 

of oscillation for a fixed value of 𝑈𝑅. The linear stability analysis provides an understanding of the increase and decrease 

of the eigenvalues for different values of Reynolds number. 

 

5. CONCLUSIONS 

 

The numerical simulations performed, aligned with the considerations from Li et al. (2019) provided a framework for 

the investigation of the modes responsible for each range of instability (VIV, Pre-galloping ang Galloping). It was possible 

to confirm the assumptions that an unstable SM mode is responsible for both galloping and pre-galloping, with the 

difference being the oscillation frequency exiting the FM mode (or, in other words, the structure no longer oscillates in 

the vortex shedding frequency) and locking in the SM mode, indicating that the structure now oscillates according to its 

own frequency and demonstrating the self-excited phenomena of galloping. 

Additionally, it is possible to infer that an increase in the Reynolds number also contributes to an increase in both the 

FM and SM modes, which enables the onset of galloping for a fixed value of reduced velocity. However, due to the surge 

of 3D instabilities for the higher values of Reynolds number, the value of FM and SM ceases to increase. However, the 

linear stability analysis in the present work could not obtain another positive real eigenvalue in this range (which could 

be the responsible for the 3D instability increase). 3D LSA analysis of this cases must be done to fulfill this gap. 
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