
EPTT-2022-0060
Lid-Driven Cavity simulation using the Chapel programming language

Anna Caroline Felix Santos de Jesus
Livia S. Freire
Instituto de Ciências Matemáticas e de Computação (ICMC) - University of São Paulo (USP)
carolinefelix@usp.br, liviafreire@usp.br

Nelson Luis Dias
Federal University of Paraná
nldias@ufpr.br

Abstract. Most softwares in the context of computational fluid dynamics are developed with the languages C or Fortran,
due to their low computational cost. These languages, however, require additional tools such as MPI or OpenMP for
parallelism. In this context, the performance of the new programming language Chapel was investigated. This language
purports to be fast like Fortran, portable like C and easy to code as Matlab, with a parallelization that is significantly
simpler to implement compared to MPI. A code was implemented to solve the two-dimensional, transient, incompressible
lid-driven cavity flow in the Chapel 1.24 and Fortran languages. The implementation is based on the finite volume method,
incorporating the classical projection method to decouple the velocity and pressure fields. Preliminary verification results
using the method of the manufactured solution demonstrate a correct implementation and a convergence of second order
in space. Moreover, the velocity profiles obtained for Reynolds number 100 with different meshes are in agreement with
literature data. Regarding the performance of the new language, in serial, Chapel 1.24 compiled with the --fast flag
presented a higher computational cost compared to Fortran using the GNU compiler and the-Ofast optimization flag.
However, the difference in computational cost between the languages decreased with increase in the number of grid
points, indicating a tendency of similar cost for heavier simulations. Finally, the parallel version of the Chapel code was
obtained by including simple commands, resulting in a low speedup that also improved with increase in the number of
grid points. For a better evaluation, future work will test heavier simulations in a cluster.

Keywords: Computational fluid dynamics (CFD), Incompressible flow, Finite volume method, Projection Method, Chapel,
Fortran.

1. INTRODUCTION

In the context of computational fluid dynamics (CFD), most of the available softwares that simulate the Navier-Stokes
equations are implemented in the C or Fortran languages due to their efficiency in solving computationally intensive
problems. Such languages, however, are not intrinsically parallelizable, and external tools such as MPI (Message Passing
Interface) or OpenMP (Open Multi-Processing) are required. As an alternative, Chamberlain et al. (2007) developed a new
language that should be as fast as Fortran, as portable as C and as easy to implement as Matlab or Python. The Chapel
programming language (an acronym for Cascade High Productivity Language) incorporates the best of the aforemen-
tioned languages, without the need for programmers to know the details of parallelization. The commands are intuitive
and allow building simpler and faster codes, making it a potential tool for the development of new CFD softwares in a
more efficient way.

Chapel was designed to support general parallel programming through the use of high-level language abstractions. For
example, the commands for parallelization of loops, such as forall, are responsible for automatically distributing and
sharing data between processes without any explicit input from the programmer. The focus on parallel programming is so
relevant that the serial implementation has to be enforced through a serial statement. More details about the simplified
implementation syntax compared to MPI are given by Barrett et al. (2007).

In this work, we test the Chapel language using the two-dimensional cavity as a benchmark flow. The numerical
solution is provided by the finite volume approximation and the projection method. The code is verified using the Method
of the Manufactured Solution (MMF) and validated against literature results for the same flow. In addition, the efficiency
of the serial version of the code is compared to the same code written in Fortran 90. Different implementation strategies
regarding the syntax were explored in order to get the maximum serial performance from each code. Finally, initial tests
of Chapel in parallel were performed, using up to four processors with hyper-threading in a laptop. Concluding remarks
are presented in Section 5..

2. GOVERNING EQUATIONS AND NUMERICAL METHODS

The two-dimensional, incompressible cavity flow is governed by the Navier-Stokes equations described here in con-
servative, dimensional form, i.e.,

ρ

[
∂u
∂t

+∇ · (u ⊗ u)
]
− µ[∇ · (∇u)] +∇ · (pI) = 0 in Ω, (1)

∇ · u = 0 in Ω, (2)

defined in a domain Ω ⊂ R2. In Eqs. (1) and (2), u and p represent the unknowns for the velocity and pressure fields of
the flow, respectively, and ρ and µ are the fluid’s density and dynamic viscosity. The notation u ⊗ u denotes the tensor
[uiuj], i, j = 1, 2 and I is the identity matrix I2×2.

The appropriate boundary conditions on partial Ω must be satisfied, namely:
1. the walls are solid and impermeable;
2. at the instant t0 = 0, the lid of the cavity is instantaneously accelerated to the velocity u0, which remains constant.

Due to viscous stresses, the motion of the lid “pulls” the fluid that is adjacent to it, driving the flow. The Reynolds number
used in the present study is Re = 100, with ν = 10−2, Lx = Ly = 1 (the length of the box) and u0 = 1. The boundary
conditions of the problem are presented in Fig. 1.

u = 0, v = 0 u = 0, v = 0

u = 0, v = 0

Ω

u = u0, v = 0

Figure 1: Boundary conditions of the cavity flow. The flow is driven by the movement of the lid.

The spatial discretization was done using the conservative finite volume method. The idea of the method is to subdi-
vide the computational domain into small subdomains and integrate the governing equations over each of them. In this
particular work, a uniformly spaced two-dimensional mesh was considered, i.e., Ωi = ∆x × ∆y = Lx/Nx × Ly/Ny ,
where Ωi is a subdomain of the computational mesh of Ω = (−∆x, Lx + ∆x) × (−∆y, Ly + ∆y), and Nx × Ny are
the number of grids. The time discretization was performed using the Forward Euler method. The boundary condition
treatment uses the reflection technique, which requires the use of the 4 bands of ghost cells as schematized in Fig. 2.

Ωi

∆x

∆y

Lx

Ly

Figure 2: Domain discretization of the cavity flow. Ghost cells are hatched.

In this study a staggered grid was used, in which the unknowns corresponding to the velocity components are located
at the faces of the control volume Ωi, while the pressure unknowns are located in the centers of each volume. In addition,
the velocity and pressure fields are segregated by the projection method proposed by Chorin (1968), as described next.

Let Un ≈ u(x, y, tn) = (u(x, y, tn), v(x, y, tn)) be an approximation for the velocity vector at the nth time step. An
intermediate velocity U∗ is calculated using the momentum equation without the pressure gradient term, i.e.,

U∗ − Un

∆t
=

1

ρ

(
µVISCn − ρCONV(Un)

)
,

or

U∗ = Un +∆t

(
νVISCn − CONV(Un)

)
. (3)

Here, VISCn represents the result of LUn (L ≈ ∇2) and CONV(Un) is the operator that approximates the convective
(nonlinear) term. Explicitly, they can be written as(

CONV(Un)

)
x

=
1

∆y

[(
Ui,j+1 + Uij

2

)(
Vi−1,j+1 + Vij

2

)
−
(
Uij + Ui,j−1

2

)(
Vi−1,j + Vij

2

)]
+

1

∆x

[(
Uij + Ui+1,j

2

)2

−
(
Ui−1,j + Uij

2

)2]
, (4)

(
CONV(Un)

)
y

=
1

∆y

[(
Vij + Vi+1,j

2

)2

−
(
Vi,j−1 + Vij

2

)2]
+

+
1

∆x

[(
Ui,j+1 + Uij

2

)(
Vi−1,j+1 + Vij

2

)
−
(
Uij + Ui,j−1

2

)(
Vi−1,j + Vij

2

)]
, (5)

(
VISCn

)
x

=

(
Ui,j+1 − 2Uij + Ui,j−1

∆y2
+

Ui+1,j − 2Uij + Ui−1,j

∆x2

)
, (6)

and (
VISCn

)
y

=

(
Vi,j+1 − 2Vij + Vi,j−1

∆y2
+

Vi+1,j − 2Vij + Vi−1,j

∆x2

)
. (7)

After solving Eq. (3), the solution for U∗ is used in the calculation of the pressure field by solving a Poisson Equation.
Note that U∗ does not satisfy the incompressibility condition, i.e., DU∗ ̸= 0 (D is the discrete divergence operator). Using
the fact that DUn+1 = 0, the following Poisson equation for the pressure is obtained:

GPn+1 =
ρ

∆t
DU∗, (8)

where Pn+1 ≈ p(x, y, t+1) and G is the discrete gradient operator. Defining RHS = ρDU∗/∆t, the descrete Poisson
equation can be written as

Pn+1
i+1,j − 2Pn+1

ij + Pn+1
i−1,j

∆x2
+

Pn+1
i,j+1 − 2Pn+1

ij + Pn+1
i,j+1

∆y2
= RHSn+1, (9)

where

RHSn+1 =
ρ

∆t

(
U∗
i+1,j − U∗

i,j

∆x
+

V ∗
i,j+1 − V ∗

i,j

∆y

)
. (10)

The linear system obtained from Eq. (9) is solved by the iterative SOR (successive over-relaxation) method given by

Pij = (1− ω)Pij + ωP ∗
ij , (11)

where ω we defined in the interval (0,2).

P ∗
ij =

1

(2β + 1)

(
−∆x2

2
RHSn+1 + Pi−1,j + Pi+1,j + β(Pi,j−1 − Pi,j+1)

)
, β :=

∆x2

∆y2
. (12)

The boundary condition is imposed as the normal gradient ∂p/∂n = 0 along the boundaries (for details see Fortuna
(2000)). The method is iterated while

∥errorp∥2 ⩾ tol, (13)

where tol is the tolerance for the error in the Poisson equation. In Eq. (13), the Euclidean norm is calculated over the
residual errorp, defined as

errorp := RHSn+1 −
(
Pn+1
i+1,j − 2Pn+1

ij − Pn+1
i−1,j

∆x2
+

Pn+1
i,j+1 − 2Pn+1

ij − Pn+1
i,j+1

∆y2

)
. (14)

In the last step of the projection method, the velocity field is updated. Thus, the velocity at tn+1 is given by

Un+1 − Un

∆t
= −1

ρ
GPn+1, (15)

that is,

Uij
n+1 = U∗

ij −
∆t

ρ

(
Pn+1
i+1,j − Pn+1

i,j

∆x

)
and V n+1

ij = V ∗
ij −

∆t

ρ

(
Pn+1
i,j+1 − Pn+1

i,j

∆y

)
. (16)

Eliminating U∗ , we have

Un+1 − Un

∆t
− CONV(Un) + νVISCn +

1

ρ
GPn+1 = 0, (17)

DUn+1 = 0, (18)

which corresponds to the original system of equations.

3. CODE VERIFICATION AND VALIDATION

3.1 Code verification

The Method of Manufactured Solution (MMS) was developed to verify if the code correctly solves its governing
mathematical equations, by creating an exact (manufactured) solution that should be obtained if the code is free of typos
and programming errors (Roache, 2002). In addition, the difference between the exact solution and the solution generated
by the code using different spatial resolutions provides an estimate of the order of accuracy of the code.

As proposed by Chorin (1968), we consider the exact solution

u(x, y, t) = − cosx sin ye−2t, (19)

v(x, y, t) = − sinx cos ye−2t, (20)

p(x, y, t) = −1

4
(cos 2x+ cos 2y)e−4t, (21)

defined in the domain Ω = (0, π) × (0, π). Substituting Eqs. (19)–(21) in Eq. (1) no additional forcing term is obtained,
which simplifies the evaluation. The initial condition corresponds to Eqs. (19)–(21) at time t = 0. Note that this method
does not require solutions with physical meaning, and the choice here does not correspond to the boundary conditions
for the lid driven cavity problem. The exact equation for the pressure field, in particular, does not satisfy the criterion of
∂p/∂n = 0. Therefore, we impose the exact values of the velocity field on ∂Ω (Dirichlet condition) and impose the exact
values of the pressure in the volumes adjacent to the boundary.

The errors obtained in the verification test indicates that the code is correctly resolving the two-dimensional Navier-
Stokes equation. Furthermore, by fixing the time at t = 0.15 s, a convergence study is done in space, considering different
meshes (202, 402, 802 and 1602). For the iterative method, the parameter ω was set as 1.94 for all proposed meshes, since
the method is sensitive to the chosen value of ω in the interval 0 < ω < 2. Table 1 shows the results of the error measured
with the L∞(Ω) norm.

Table 1: Errors in L∞ norm to Un, V n, Pn+1

h max |Un − u(tn)| O max |V n − v(tn)| O max |Pn+1 − p(tn+1)| O
π/20 2.5468e-03 - 4.3647e-04 - 4.3696e-04 -
π/40 4.1653e-04 2.6122e+00 2.8112e-05 3.9566e+00 2.76911e-05 3.9800e+00
π/80 1.1227e-04 1.8914e+00 2.2419e-06 3.6483e+00 2.2065e-06 3.6495e+00
π/160 2.8640e-05 1.9708e+00 2.6770e-07 3.0660e+00 2.6545e-07 3.0552e+00

The plot of the error as a function of h = ∆x = ∆y, measured with different norms, is shown in Fig. 3. Convergences
of O(h2) and O(h3) were obtained for the pressure and velocity fields, respectively, which is in agreement with the order
of the numerical method used.

(a) Error in pressure (b) Error in velocity (x - component) (c) Error in velocity (y - component)
Figure 3: Errors in the code as a function of grid size h, for different error norms.

3.2 Code validation

In this section, the validation of the code using results from the literature is presented. The velocity profiles, shown
in Fig. 4, are plotted for different meshes on top of the result by (Ghia et al., 1982). The comparison uses ω = 1.94 for
the iterative method SOR. The agreement between the present study and the reference results increases with resolution,
indicating that the code is correctly simulating the cavity flow.

y

0 0.2 0.4 0.6 0.8 1

u

-0.2

0

0.2

0.4

0.6

0.8

1

Chapel 20× 20

Chapel 40× 40

Chapel 80× 80

Fortran 20× 20

Fortran 40× 40

Fortran 80× 80

GhiGhi82

(a)

x

0 0.2 0.4 0.6 0.8 1

v

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Chapel 20× 20

Chapel 40× 40

Chapel 80× 80

Fortran 20× 20

Chapel 40× 40

Chapel 80× 80

GhiGhi82

(b)
Figure 4: (a) x-component velocity profile along the vertical line (u(x = 0.5, y)) and (b) y-component velocity profile
along the horizontal line (v(x, y = 0.5)).

Another way of verifying the result of this simulation is presented in Fig. 5b for a mesh of 802 grids. The generated
solution was obtained at the time instant t = 30s. The formation of a principal vortex in the bulk of the flow and two
secondary vortices at the inferior corners can be observed, as obtained in the reference study.

4. COMPARISON BETWEEN CHAPEL AND FORTRAN

4.1 Impact of syntax on efficiency

In this section, we highlight the main implementation details that significantly impact code runtime. Programming
two versions of a code in different languages requires taking into account their specificities. In other words, to build an
efficient code in Fortran and Chapel requires knowing their particular technical details. For example, the way arrays are
accessed in memory affects the performance of the code. In Fortran, as in MATLAB, the array is stored in column-major,
whereas C and Chapel uses row-major (see Suh and Kim (2014)). As accessing memory in the correct order makes the
code runs faster, the comparison between Chapel and Fortran cannot be performed with identical codes.

As another example, when calculating the error in Eq. (13), the Euclidean norm can be calculated in Fortran directly

(a) Velocity field obtained by Ghia Ghia et al. (1982) for a mesh
1292 and Re = 100.

(b) Velocity field from the present study using 802 grids and
Re = 100.

Figure 5: Streamlines of the flow field compared to the literature.

with the command norm2(errop). In Chapel, on the other hand, it is preferred to use an alternative expression with
reduction operators. The command reduce, an operator with implicit parallelism in Chapel, is responsible for combin-
ing a set of values to produce a single value (see https://github.com/chapel-lang/chapel/blob/main/test/
release/examples/primers/reductions.chpl), and it can be used in the construction of the Euclidean norm calcu-
lation, instead of using the function norm, pre-defined in the library LinearAlgebra, as follows

// param p : normType; // defaut: euclidian norm
// errop = norm(erro , p); // residue norm
errop = sqrt(+ reduce (erro ** 2)); // residue norm

Also, when implementing the iterative method section for solving Poisson equation, it is necessary to normalize the
pressure field at each iteration of the method to prevent the pressure values from increasing or decreasing arbitrarily. In
Fortran, this step is implemented as

pnew = pnew - pnew (2,2); // pressure normalization

whereas in Chapel the implementation is

pnew -= pnew [2,2]; // pressure normalization

similar to what would be done in the C programming code.
We note that the choice of the time step of the adopted numerical method must satisfy the following conditions:

∆t ⩽ τ min{∆x2,∆y2} and ∆t ⩽
min{∆x,∆y}
max{|u|, |v|}

, 0.2 < τ < 0.6. (22)

In Fortran, this corresponds to

! Find the maximum velocity , in absolute value
mu = maxval(abs(unew))
mv = maxval(abs(vnew))

dt1 = min(dx/mu , dy/mv) ! CFL condition
dt2 = 0.5d0/vkinem /(1.d0/(dx**2) + 1.d0/(dy**2))
dt = 0.4d0*min(dt1 ,dt2) ! constant tal =0.4

and in Chapel

// Find the maximum velocity , in absolute value
mu = max reduce(abs(unew));
mv = max reduce(abs(vnew));

dt1 = min(dx/mu , dy/mv); // CFL condition
dt2 = 0.5/ vkinem /(1.0/(dx**2) + 1.0/(dy**2));
dt = 0.4* min(dt1 ,dt2); // constant tal = 0.4

The max reduce command is also part of Chapel’s reduction operators. It is normally used to terminate the maximum
input of an array and is a parallel command.

Finally, we note that the Chapel code implementation is algebra-sensitive. For example, when calculating the quadratic
value of the finite volume size ∆x for the time-step calculation (22), we have

dt2 = 0.5/ vkinem /(1.0/(dx**2) + 1.0/(dy**2));

rather than

dx2 = dx*dx;
dy2 = dy*dy;

dt2 = 0.5/ vkinem /(1.0/ dx2 + 1.0/ dy2);

which has a higher runtime value. Although a significant effort was put into identifying ways of making each code as
efficient as possible, we recognize that there is likely room for improvement on each code, which should be taken into
account when evaluating the results from the next subsection.

4.2 Serial code comparison

Our experimental setup is performed on a laptop Lenovo Ideapad S145-15IWL Intel Core i5 whose configuration is
shown in Tab. 2. As can be seen, this machine has 4 cores, and it also includes hyper-threading.

Table 2: Machine and Operating System.
Machine Notebook Lenovo IdeaPad S145-15IWL
Memory 7.5 GiB

Processador Intel© Core™ i5-8265U CPU @ 1.60GHz × 4
Operating System Linux Mint 20.3 Cinnamon

Because we used implicitly parallel operators in the Chapel code (arrays initialization and reduce operator), it was
necessary to disable parallelism using the statement serial, in order to compare it with the serial version of Fortran. The
modification is easily implemented by doing

serial{

// instructions

}

allowing the evaluation of the serial performance between the two languages for different grids (202, 402 and 802).
The Chapel code was compiled with the --fast optimization flag, whereas the Fortran code was compiled with

different optimization flags of the GNU compiler (-O2, -O3 -Ofast). For more details see https://gcc.gnu.org/
onlinedocs/gcc/Optimize-Options.html. The average runtimes are shown in Fig. 6.

(a) mesh dimension 202 (b) mesh dimension 402 (c) mesh dimension 802

Figure 6: Average runtimes for different grids.

Overall, Chapel’s simulation is slower than Fortran with any optimization flag. However, Chapel’s runtime results
compared to Fortran improve as the computational cost of the problem increases (by increasing the number of grids).

Therefore, if the tendency continues, it is possible that Chapel’s performance becomes comparable to Fortran for heavier
simulations.

4.3 Parallel Implementation in Chapel

Because Chapel was developed with a focus on parallel programming, in this section we investigate its parallel per-
formance by removing the serial command from the code. In addition, we keep the reduction operators of the code and
replace the traditional loop command for with the parallel command forall. The forall command divides the tasks
between the number of maximum threads at each “locale” (similar to the nodes in a cluster), which is the number of
threads of the system by default. One of the changes is exemplified in the following excerpt, which shows the calculation
of the source term of Poisson equation:
(serial version)

//Step 2: Build the right -hand side of the equation Poisson equation for the pressure
//D G(p^{n+1}) = (rho/dt)*D(u^*)
for i in 2..Nx -1 do{

for j in 2..Ny -1 do{
rhs[i,j] = rho/dt*((ustar[i+1,j] - ustar[i,j])/dx +

(vstar[i,j+1] - vstar[i,j])/dy);
}

}

(parallel version)

//Step 2: Build the right -hand side of the equation Poisson equation for the pressure
//D G(p^{n+1}) = (rho/dt)*D(u^*)
const Inner = {2..Nx -1, 2..Ny -1};
forall (i,j) in Inner do{

rhs[i,j] = rho/dt*((ustar[i+1,j] - ustar[i,j])/dx +
(vstar[i,j+1] - vstar[i,j])/dy);

}

Another parallelization command tested here corresponds to the embedding statement cobegin, which creates a fixed
number of independent tasks based on the number of available threads, when the tasks inside the loop do not depend on
previous values. For example, when implementing the boundary condition during the velocity field update, we can do:

// Update velocity field
cobegin{

unew [3..Nx -1,1] = - unew [3..Nx -1,2];
unew [3..Nx -1,Ny] = 2.0*u0 - unew [3..Nx -1,Ny -1];

vnew [1 ,3..Ny -1] = - vnew [2,3..Ny -1];
vnew[Nx ,3..Ny -1] = - vnew[Nx -1,3..Ny -1];

}

In Chapel, the number of threads available on the machine can be found using the command locale.numPUs(),
which returns the number of processor cores in the “locale” (nodes). For example, if we use

var npu = Locales [0]. numPUs(logical=true); // threads (maximum parallelism)
var npc = Locales [0]. numPUs(logical=false); // cores

the output is number of cores = 4 and number of thread = 8. Therefore, each core can run two processes simultaneously.
In order to evaluate the parallelization, we run each code with a different number of threads by changing only the

environment variable CHPL_RT_NUM_THREADS_PER_LOCALE. If the number of threads desired is 2, for example, then we
can set CHPL_RT_NUM_THREADS_PER_LOCALE=2, and the commands forall(i,j) and cobegin will divide the tasks
inside the loop into 2 processors.

Two parallel versions of the code were tested here, the first replacing only the loop command for by forall, and the
second keeping the forall command and adding the cobegin statement. In these tests, each code was run three times
and speedups were calculated from the average result. Figures 7 and 8 show the average execution time for each adopted
mesh and Fig. 9 provides the speedup as a function of the number of threads (Snpu = T1/Tnpu, where T1 is the serial
runtime and Tnpu is the runtime on npu threads).

Based on these results, we can observe that, for a small number of grid points (202), there is no gain in parallelization
when using only forall (Fig. 7a), and only a small gain when using two threads if cobegin is included (Fig. 8a). As
the number of grid points increases, the effectiveness of parallelization becomes more evident, in particular for 2 threads.
The tendency of these results indicate that, for heavier codes (more grid points, for example), the gain in parallelization
will likely become more relevant, as can be observed in the speedup result (Fig. 9).

(a) mesh dimension 202 (b) mesh dimension 402 (c) mesh dimension 802

Figure 7: Average runtimes for different meshes and varying the number of threads (using only the forall command)
.

(a) mesh dimension 202 (b) mesh dimension 402 (c) mesh dimension 802

Figure 8: Average runtimes for different meshes and varying the number of threads (using forall + cobegin).

(a) (b)
Figure 9: Speedup for varying number of threads. The dashed line corresponds to an ideal speedup. Speedup for (a) forall
(b) forall + cobegin.

In the future, this code will be evaluated in a cluster, which is a more controlled environment. More than 8 processes
will be tested using heavier simulations, such as higher Reynolds numbers and the three-dimensional cavitation problem.

5. CONCLUSIONS

In this study, we evaluated the potential of the Chapel programming language for writing a CFD code. The two-
dimensional cavity benchmark flow was used with Re = 100. The code was verified by the method of manufactured
solution and validated against literature results. For a simulation in serial, the Chapel code was slower than the cor-
responding Fortran code, but the difference in time decreased when the number of grid points increased, indicating a
tendency of similar runtime for heavier simulations. The parallel version of the Chapel code, which is extremely simple to
implement, was not effective for a small simulation (202 grid points), but presented a tendency of improvement in speedup
with the increase in the number of grid points. Since the tests presented here were performed in a laptop, it is desired to
perform additional tests in a cluster, with a larger number of points, taking advantage of more processors and without the
interference of the background operating system. This test will be performed in the future for larger Reynolds numbers
and the 3D cavity flow.

6. ACKNOWLEDGEMENTS

This study was funded by the Coordination for the Improvement of Higher Education Personnel (CAPES grant PROEX
88887.671252/2022-00) and the São Paulo Research Foundation (FAPESP grant Nº. 2018/24284-1).

7. REFERENCES

Barrett, R., Roth, P. and Poole, S., 2007. “Finite difference stencils implemented using Chapel”. Technical Report
TM-2007/119, Oak Ridge National Laboratory.

Chamberlain, B., Callahan, D. and Zima, H., 2007. “Parallel programmability and the chapel language”. The International
Journal of High Performance Computing Applications, Vol. 21, No. 3, pp. 291–312. doi:10.1177/1094342007078442.

Chorin, A., 1968. “Numerical solution of the navier–stokes equations”. Mathematics of Computation, Vol. 22. doi:
10.2307/2004575.

Fortuna, A.d.O., 2000. Técnicas Computacionais para Dinâmica dos Fluídos Vol. 30. Edusp.
Ghia, U., Ghia, K. and Shin, C., 1982. “High-re solutions for incompressible flow using the navier-stokes equations and

a multigrid method”. Journal of Computational Physics, Vol. 48, No. 3, pp. 387–411. doi:10.1016/0021-9991(82)
90058-4.

Roache, P., 2002. “Code verification by the method of manufactured solutions”. Journal of Fluids Engineering, Vol. 124,
p. 4. doi:10.1115/1.1436090.

Suh, J.W. and Kim, Y., 2014. “1 - accelerating matlab without gpu”. In J.W. Suh and Y. Kim, eds., Accelerating MATLAB
with GPU Computing, Morgan Kaufmann, Boston, pp. 1–17. doi:10.1016/B978-0-12-408080-5.00001-8.

8. RESPONSIBILITY NOTICE

The authors Anna Caroline Felix Santos de Jesus, Livia S. Freire and Nelson Luís Dias are the only responsible for
the printed material included in this paper.

