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Abstract. Density current, or gravity current, is a phenomenon where one fluid flows through another due to a density
difference between them. This kind of flow is formed in many natural situations as well as in situations created by
humankind, for example, thunderstorm outflows, pyroclastic flows, sandstorms, and others in the manufacturing process,
like sheet glass. Because of that, the study of density currents has applications in many different areas like meteorology,
atmospheric pollution, entomology, and the industry of gas and oil. This work focus on the numerical study of bi-disperse
particle-laden gravity current in the so-called lock-release configuration. The goal is to understand the effect of the
Schmidt (Sc) number on the behavior and dynamics of particle-laden density flows and the formation of their deposits.
Simulations using direct numerical simulation (DNS) and implicit large eddy simulation (LES) are performed. Three
cases are evaluated for the Schmidt number using the LES approach: (i) unitary value for both particle fractions, (ii)
Sc=3 and Sc=1 for coarse and fine particle fractions respectively, (iii) and Sc=9 and Sc=3 for coarse and fine particle
fractions. Also, a simulation using the DNS approach for unitary value for both particle fractions of Schmidt number is
performed as a reference case. All simulations have a Reynolds (Re) number of 5000. To quantify the study some features
of the flow are calculated like the position of the current head, suspended mass, and height of deposit profile. Also, the
temporal evolution of the energy budget of the simulations is computed. The results of the simulations are compared with
previous physical approach experiments available in the bibliography, getting a good agreement. Analyzing the effect of
Schmidt variation in the front head position, show that simulations with double mass diffusivity reach a greater distance
than simulations with Schmidt unitary after the flow gets in the deceleration phase and keeps this situation for the rest of
the computational time. For suspended mass, it is observed that the fine particles are deposited more quickly by increasing
the Schmidt number. Also, it is observed that an increase in the Schmidt number caused a smoothness in the peaks present
in the deposit profile. For the temporal evolution of the energy budget, the results show that the principal mechanism for
energy dissipation is related to turbulent dissipation, which also increases with the Schmidt number.

Keywords: Bi-disperse current, particle-laden gravity current, direct numerical simulation, large eddy simulation, depo-
sition of particles

1. INTRODUCTION

Density current, or gravity current, is a type of flow where the motion of one fluid through another is caused by a
density difference between them. When the main gradient is in the horizontal direction, one fluid propagates horizontally
through the other. The variation of density could be caused by a difference in temperature, salinity, or by particles in
suspension. This kind of flow occurs in many natural situations as well as created by humankind. Some examples are
thunderstorm outflow, sea-breeze fronts, airborne snow, sandstorm, powder snow avalanches, and pyroclastic flows. In
the ocean, these flows are driven by salinity and temperature inhomogeneities, or like in turbidity currents whose density
gradients derive from suspended mud or silt. Density currents own important applications in aircraft safety, entomology,
pest control, and spreading pollutants in rivers, lakes, and the atmosphere. In the industry, this kind of flow could be
observed in the manufacturing process of sheet glass. For engineering, gravity currents are extremely dangerous since
they can destroy seafloor equipment like pipes and cables (Ellison and Turner, 1959; Simpson, 1982).

Turbidity currents are particle-laden gravity-driven underflows in which the particles are largely or wholly suspended
by fluid turbulence. The turbulence is typically generated by the forward motion of the current along the lower boundary
of the domain, the motion in turn driven by the action of gravity on the difference between the particle-fluid mixture and
the ambient fluid. Such flows are considered nonconservative due that they may exchange particles with a loose lower
boundary by deposition or suspension, and may exchange fluid with the ambient by entrainment or detrainment. Turbidity
currents are important agents of sediment transport into subaqueous environments such as deep lakes and oceans. This
kind of flow along with submarine landslides are the principal mechanism by which sediment is transported from shallower
to deeper water (Meiburg and Kneller, 2010). In the oceans, submarine flows can generate deposits several thousands of
kilometers from their source (Talling et al., 2007). The industry of oil and gas has a great interest to understand this kind
of flow, because deposits of sand formed by turbidity currents have a high potential to become hydrocarbon deposits.

There are many ways to study the behavior of density current. One approach is through the mathematical modeling of
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the governing equations which rule the dynamic of the flow. Another way is through physical experiments which consist
in reproducing this phenomenon on a reduced scale, this could be done by filling a tank with water and creating a flow by
releasing another fluid of a different density into the tank. Some examples of this kind of approach are Middleton (1966),
Simpson (1972), Huppert (1982) and Gladstone et al. (1998). Also, the behavior of gravity current can be understood
by a numerical approach where the governing equations are solved by a numerical scheme. Some works that utilize
this methodology are Kubo (2004), Necker et al. (2005), Cantero et al. (2007), Espath et al. (2014), Nasr-Azadani et al.
(2013), Nasr-Azadani et al. (2016), Francisco et al. (2017), and Frantz et al. (2021).

One of the most important parameters in the simulation of a density current is the Schmidt number (Sc). This dimen-
sionless parameter is defined as the ratio of kinematic viscosity and the mass diffusivity, and it is related to how the heavy
and light fluids can mix being a important factor in determining the structure and the dynamics of the current. At the
macroscale, the mixing is caused by interfacial instabilities, while at the molecular level is controlled by the diffusivity
of the agent responsible for density difference. In gases and liquids, thermal and concentration diffusivities show wide
variation. For example, the Schmidt number for thermal diffusivity in the air is around 0.7, while in water it is about 7.0.
In contrast, the Schmidt number for salt and several other solvents in water is at the order of O

(
102

)
. For immiscible

fluids, like oil and water, the Schmidt number tends to have very high values with mixing occurring only at macro-scale
through interfacial instability and turbulence (Bonometti and Balachandar, 2008). Nevertheless, most of the studies in
numerical simulation only consider the value 1 for the Schmidt number, even though this parameter can reach values of
greater order.

Necker et al. (2005) tested the influence of Schmidt number in their simulations. They got that the flow is independent
for Schmidt number not much smaller than one. Bonometti and Balachandar (2008) analyzed the effect of Schmidt
number for the structure and dynamic of density current. Their results show that there is a weakly influence of this
parameter for simulations with Reynolds number greater than O(104). On the other hand for low and moderate Reynolds
density currents are dependant on Schmidt as the structure of the mixing region and front head velocities are modified by
diffusion effects. Marshall et al. (2021) performed tree-dimensional simulations to investigate the effect of Reynolds and
Schmidt number in the structure and dynamic of density current. They find that some features of the flow are independent
of the Schmidt number, like the head front velocity, otherwise the appearance of lobe-and-cleft structures in the head show
great influence of Schmidt number even with increasing of Reynolds number. Other features, like the thickness of the
current, the Schmidt number lost relevance by increasing the Reynolds number.

This study uses a numerical approach to understand the behavior of particle-laden gravity current. The goal of this
research is to investigate the influence of the Schmidt number on the dynamic of the flow, so direct numerical simulations
(DNS) and implicit large eddy simulations (LES) of bi-disperse particle-laden gravity currents in a lock-release configu-
ration (see Fig. 1) are performed. Numerical experiments of the same initial concentration of coarse and fine particles
fractions are performed for unique and different values of Schmidt number with the same Reynolds number of 5000.
The in-house code Xcompact3d is used to solve the incompressible Navier-Stokes equations by a numerical approach.
To quantify the study, some features of the flow are calculated like the front head position, suspended mass, and deposit
profile. Also, the complete temporal evolution of the energy budget of the current is calculated. For validation of the nu-
merical scheme utilized in this study the results of the simulations are compared with physical experiments of Gladstone
et al. (1998).

L1

L0

L2

L3

Figure 1. Schematic view of initial condition of lock-release configuration. The lock (filled region) is the place where the
mixture is confined at the start of the simulation (t = 0). The calculation domain has length L1, height L2, and width L3.

L0 is the length of the lock region. Adapted from Francisco et al. (2017).

2. METHODOLOGY

In this section, the governing equations, the flow configuration as well as the treatment for the data post-processing
will be described.

https://github.com/xcompact3d
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2.1 Governing equations and boundary conditions

This numerical study uses the lock-release configuration in his approach. In the initial state of this configuration
(t = 0) the mixing is restricted to a subarea of the domain, called lock, isolate from the rest of the domain by a gate.
The experiment begins by removing the gate and the mixing start to flow. From this moment two mechanisms yield the
flow motion: (i) the first one is caused by the transformation of potential energy into kinetic energy, leading to advective
motion, and (ii) the other is the diffusive motion that is generated by the potential density difference between heavy and
light fluid.

To evaluate the flow motion the incompressible Navier-Stokes equations and scalar transport equation under the
Boussinesq approximation are solved using a numerical approach. The height of domain L2 is used with characteris-
tic length scale h̃ (the symbol˜is used to denote dimensional quantities while the others are dimensionless), h̃ = L2, the
buoyancy velocity ũb is defined as

ũb =

√
g̃′h̃, (1)

where g̃′ is the reduced gravitational acceleration given by

g̃′ =
g̃ (ρ̃p − ρ̃0) ct0

ρ̃0
, (2)

where g̃ is the gravitational acceleration, ρ̃p is the mixing density, ρ̃0 is the density of ambient fluid, and ct0 is the initial
total concentration inside the lock.

The Reynolds and Schmidt number are defined as

Re =
ũbh̃

ν̃
, (3)

Scl =
ν̃

k̃l
l = 1, ..., N, (4)

where ν̃ denotes the kinematic viscosity, Scl and k̃l are respectively the Schmidt number and the mass diffusivity coeffi-
cient for each particle fraction l. N is the total number of particle fractions in the current, being each fraction characterized
by a different diameter. In this study, all the simulations performed are bi-disperse (N = 2).

In the dimensionless form, the Navier-Stokes equations and scalar transport equation can be written as

∂ui

∂xi
= 0, (5)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
+ cte

g
i , (6)

∂cl
∂t

+
(
uj + us

l e
g
j

) ∂cl
∂xj

=
1

SclRe

∂2cl
∂xj∂xj

l = 1, ..., N, (7)

where ui and p are respectively the velocity and pressure field, i and j are indexes for each spatial coordinate. cl and us
l

are respectively the concentration field and the settling velocity for each particle fraction l. egj = (0,−1, 0) is the unitary
vector acting in the direction of the gravitational acceleration.

The total concentration field ct could be calculated by the sum of concentration for each particle fraction

ct =

N∑
l=1

cl l = 1, ..., N. (8)

At start of the simulation (t = 0) the value of ct is 1 in lock region and 0 for the rest of the domain.
As was previously discussed, the Schmidt number could be very high and computationally expensive to simulate.

To overcome this problem, an estimation based on the diffusivity coefficient for each particle is used, considering the
Einstein-Stokes equation (Bird et al., 2004),

k̃l =
k̃BT̃

6πµ̃r̃l
, (9)

where k̃B is the Boltzmann constant, T̃ is the absolute temperature, µ̃ is the dynamic viscosity coefficient, and r̃l is the
radius of each particle fraction l.
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Applying the ratio between the Schmidt number for the two-particle fraction and considering the Eq. 9 the following
relation arrives

Sc1
Sc2

=
k̃2

k̃1
=

r̃1
r̃2

. (10)

Considering typical values of 69µm and 25µm for coarse and fine particle fraction, which are the same values of the
particles in the experiments of Gladstone et al. (1998), and apply the Eq. 10 it is calculated the value ≈ 3 for the ratio
Sc1/Sc2. In this study, this ratio was used in the simulations with different values of mass diffusivity.

A Cartesian mesh with n1 × n2 × n3 grid points is used in a domain of size L1 ×L2 ×L3. To reproduce the effect of
removing the gate at the beginning of the experiment a white noise with 1% of the initial potential energy is used in the
interface between the lock and the flesh fluid.

For the velocity field, a no-slip boundary condition is applied at the bottom and top of the domain (x2 = 0 and
x2 = L2), and free-slip for the rest of the domain. For the scalar field the Neumann condition is used for the bottom and
top of the domain (x2 = 0 and x2 = L2), and no-flux for the other boundaries in the domain. To take into account the
particles deposition in the vertical direction at the bottom of the domain, the following outflow boundary condition is used

∂cl
∂t

+ us
l e

g
2

∂cl
∂x2

= 0 (11)

at L2.
The Equation 11 allows mimicking the process of sediment leaving the computational domain when the particles touch

the bottom wall. In the configuration utilized the process of erosion and resuspension are not implemented.
The DNS and LES approaches are used in this study to solve the Navier-Stokes equations and the scalar transport

equation. The mean difference between those two numerical schemes is the strategy to deal with the small scales of the
flow. In the DNS approach, all scales of the flow can be represented in the mesh grid, whereas in LES the small scales are
neglected by a low-pass filter Lesieur et al. (2005). In the DNS scheme the mesh size ∆x is close to Kolmogorov scale η,
∆x ≈ η, which is enough to ensure the accuracy for the model, even though involves more computational time to solve
the flow equations. On the other hand, for the LES approach the mesh size is close to the filter size ∆, ∆x ≈ ∆, which
allows the scheme to save computational time, but requires the use of a subgrid-scale model to reproduce the dissipation
caused by the small scales (Dairay et al., 2017). The LES simulations performed in this study use a method based on the
spectral vanishing viscosity, which consists in add a viscosity dissipation in the calculation of the second derivative of the
diffusion term (Lamballais et al., 2011; Frantz et al., 2021).

2.2 Post-processing

In the post-processing of the data, some features of the flow are calculated, like the front head position, the suspended
mass, and the height of the deposit.

To determine the front head position xf the method used in Cantero et al. (2007) is applied in this study. This
framework consists in integrating the scalar field in the directions x2 and x3 to get the average concentration in direction
x1, this can be expressed in the equation

ct (x1, t) =
1

L2L3

∫ L2

0

∫ L3

0

ct dx2dx3, (12)

where ct is the total average concentration in function of x1. With this definition, the front head position could be
computed as the most forward position where the average concentration reaches a threshold value. In this study, it is used
the value of 0.1% of the total concentration field.

Farenzena and Silvestrini (2021) analyze different methods and strategies to minimize uncertainties in the temporal
evolution of the front velocity. They also propose a new approach for front head determination based on a moving frame
of reference, which avoid the use of an arbitrary iso-value. They found that a more accurate measurement of the front
head position can be reached by the interpolation of the front head acquisition method or by using the moving frame
of reference proposed in the article. This study uses the strategy of interpolation of the scalar field to minimize the
uncertainties in the calculation of the front head position.

The temporal evolution of suspended mass is performed as integral of the scalar field in the computational domain Ω
defined as

mpl
(t) =

∫
Ω

cldΩ l = 1, ..., N, (13)

where mpl
is the suspended mass for each particle fraction l.
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The Equation 11 allows the code mimics the process of sediments leaving the domain at touch the bottom wall. It is
possible to calculate the height of the deposit generated from the process of sedimentation by the time integration of the
scalar field at the bottom of the domain. The height of the deposit for each particle fraction in the function of the time is
defined as

Dl (x1, t) =

∫ t

0

< cwl(x1,τ) >x3 us
l dτ l = 1, ..., N, (14)

where Dl is the average height of the deposit in the function of x1 and the time, the operator < . > denotes the spanwise
averaging. The profile of total mass deposited is expressed by

Dt (x1, t) =

N∑
i=1

Dl (x1, t) l = 1, ..., N, (15)

where Dt is the total average height profile.

2.3 Energy budget

In essence, any gravity-driven flow can be understood as a conversion of potential energy into kinetic energy which
subsequently is dissipated into heat by viscous friction (Necker et al., 2005). The main difference between density-driven
gravity currents and particle-laden gravity currents is that dissipation occurs not only at the macroscopic scale with the
strain rate, but also at the microscale around each particle (Espath et al., 2014).

In Winters et al. (1995) is proposed a framework to calculate the energy budget of the flow. Necker et al. (2005) use
the approach of the previous study, but they assume some simplifications like neglecting the effects of diffusion in the
concentration field has on the potential energy. In this study, the step-by-step proposed in Espath et al. (2014) is used, in
their approach the energy budget of the flow is computed without any assumptions over the dissipation terms.

The energy budget for an incompressible flow with particle concentration in the dilute suspension approach can be
extracted from the governing equation and scalar transport equation. An expression for time variation of total mechanical
energy can be evaluated by

d (k + Ept
)

dt
= −

∫
Ω

2

Re
sijsijdΩ+

N∑
l=1

[∫
Ω

x2
1

SclRe

∂2cl
∂x2∂x2

dΩ+

∫
Ω

x2u
s
l

∂cl
∂x2

dΩ

]
= −ϵd − ϵst , (16)

where k and Ept are respectively the kinetic and the total potential energy. sij =
(

∂ui

∂xj
+

∂uj

∂xi

)
is the strain rate tensor.

The term ϵd is the dissipation rate related to turbulence, whereas ϵst is the total dissipation rate associated with mass
diffusion and mass loss due to sedimentation.

Integrating the terms ϵd and ϵst over the time it gets the equations

Ed (t) =

∫ t

0

ϵd (τ) dτ, (17)

Est (t) =

N∑
l=1

Esl (t) =

N∑
i=1

[∫ t

0

ϵsl (τ) dτ

]
, (18)

where Ed is the total energy dissipated for the convective motion. Esl and ϵst are respectively the temporal integration
and instantaneous microscopic dissipation for each particle fraction. Est is the total energy loss by microscopic effects.

Finally, the complete energy budget equation is given by

k + Ept
+ Ed + Est = Et0 = k0 + Ep0

, (19)

where Et0 , k0, and Ep0 are respectively the total energy mechanics, kinetic energy, and potential energy at beginning of
the simulation (t = 0).

2.4 Software

To solve the Navier-Stokes equations for incompressible fluids and scalar transport equation the code Xcompact3d,
available at https://github.com/xcompact3d/Incompact3d, is employed. Xcompact3d is a software developer in FOR-
TRAN 90 able to solve the equations for incompressible flows for both DNS and LES approaches. The code uses a
compact scheme of sixth-order finite difference for spatial differentiation (Lele, 1992) and a third-order Adam-Bashford
for time integration. For more information about compact schemes and the parallel strategy used for Xcompact3d it is
recommended reading the works of Laizet and Lamballais (2009) and Laizet and Li (2010).

https://github.com/xcompact3d/Incompact3d
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2.5 Global parameters

DNS and LES of bi-disperse particle-laden gravity currents in lock-release configuration are performed, in Tab. 1 the
global parameters of the four simulations analyzed in this study can be viewed. Three of them are performed with the
LES approach for unique and different values of Schmidt number, a one case using the DNS approach is performed to
be used as a benchmark. The Reynolds number of 5000 is used in all simulations. The domain is dimensionless using
the definition of the characteristic length scale present at beginning of this section for the experiments of Gladstone et al.
(1998). The dimensionless domain size use in all simulations are L1 = 17, L2 = 1, and L3 = 0.5. L0 = 0.5 is the
length of lock region at beginning of the simulation (t = 0). For all cases, it is used the time step of ∆t = 5× 10−4 and
the interval of 1 dimensionless time is used as the frequency for saving the data. All the simulations are stopped at the
dimensionless time of t = 90. The settling velocity for coarse and fine particle fraction are respectively us

1 = 0.03 and
us
2 = 0.004.

The terms ν/ν0 and k/k0 in Table 1 are the numerical dissipation in the numerical scheme for respective velocity
and scalar field to deal with dissipation generated by the small scales (Dairay et al., 2017; Sun and Domaradzki, 2018).
Different values of dissipation for velocity and scalar field are used to increase the Schmidt number without a great
increase in the mesh grid size.

All the simulations are done in the Laboratório de Alto Desempenho (LAD) of PUCRS. The parallel processing is
done using the MPI protocol in 4 machines with 12 cores each, in total 96 nodes are used. The machines have Intel Xeon
E5-2620 and E5645 processors, depending on the machine allocation the cloak could vary between 2.0 GHz and 2.4 GHz,
and 24 to 32 GB of RAM. The time needed to perform each simulation varied between some hours to one week.

Table 1. Global parameters. In each column there is: (i) the simulation label; (ii) the number of points in the coordinates
x1, x2, and x3; (iii) the Schmidt number for coarse and fine particle fraction; (iv) the numerical dissipation for flow field;

(v) and the numerical dissipation for the concentration field.

Simulation (nx1 , nx2 , nx3) Sc1/Sc2 ν/ν0 k/k0
DNS1 (2023, 239, 61) (1, 1) 4 4
LES1 (727, 85, 21) (1, 1) 12 12
LES2 (727, 85, 21) (3, 1) 12 16
LES3 (945, 127, 27) (9, 3) 12 24

3. RESULTS

In this section, the results of the simulations in Tab. 1 are discussed.

3.1 Visualization

In Figure 2 can be seen the snapshot of the scalar field for coarse and fine concentration particles at time t = 10.
Notice that there is no differentiation on the front head position for coarse and fine particle fractions. It is also possible to
observe the formation of some structures in the flow like Kelvin-Helmholtz vortexes behind the head of the current. For the
variation of Schmidt, it is observed the formation of more complex structures as it increases the mass diffusivity, which
shows that some features of the flow could not be observed if this parameter is neglected. Comparing the simulations
DNS1 and LES1 - both simulations with the same Reynolds number and Schmidt number, but with one using the DNS
approach and the other LES - there are few differences between both, being the mean difference between the two fields
around 3%.

3.2 Temporal evolution of front head position

In Figure 3 the temporal evolution of the front head position of the current is plotted, where the initial position is
defined as gate location. The results are compared with the experiments of Gladstone et al. (1998) and show a good
agreement until t ≈ 10, when the simulations stayed behind in comparison with the physical case, which is expected due
to the high Reynolds (Re ≈ 70000) number of the reference case. Analyzing all cases notice that until t ≈ 10 the flow
moves with constant velocity, proportional to ∼ t1, and there is no perceptible difference among the simulations. After
this time the flow enters a deceleration phase and after t ≈ 20 the difference among the front head of the simulations starts
to show.

For the effect of Schmidt number it is observed a great difference between the simulations with different mass dif-
fusivity (LES2 and LES3) and the simulations with unique Schmidt number (DNS1 and LES1). The front head position
of simulations with double mass diffusivity remains ahead in comparison with simulations with unitary Schmidt number
from the time t = 20 until the end of the computational time. This suggests that considering double mass diffusivity will
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Figure 2. Snapshot of the scalar field for coarse and fine concentration particles fraction at time t = 10 and position
x3 = 0.25.

affect the temporal evolution of the flow front head. Although increasing the mass diffusivity does not generate a great
difference between simulations LES2 and LES3, which indicates that increasing the Schmidt number for this interval did
not have a great impact. Comparing the simulations DNS1 and LES1 shows that there are weak differences in the time
evolution of front head position for these two simulations, with a mean difference of 7%. This indicates that the LES
approach can reproduce with good approximation the result of a simulation using the DNS approach, even with a number
of points around 4% of the total number of points from a DNS.

3.3 Suspended mass and deposit mean profile

In Figure 4 can be seen the temporal evolution of suspended mass for coarse particle fraction mp1 , fine particle fraction
mp2 , and total suspended mass fraction mpt . All curves are normalized by the total of suspended mass at the start of the
simulation (t = 0).

At the beginning of the simulation can be observed that the initial concentration of coarse and fine particles fractions
is equal to the initial concentration at the lock. After the mixture starts to flow the coarse particle fraction, Fig 4.a, suffers
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Figure 3. Temporal evolution of the front head position for the four simulations compared with the reference experiment
of Gladstone et al. (1998). It is considered the gate location as x1 = 0.

Figure 4. Temporal evolution of suspended mass for (a) fine particles fraction, (b) coarse particles fraction, and (c) total
of suspended mass (a+b). All curves are normalized by total of suspended mass at the start of the simulation (t = 0).

a quickly decreasing with less than 26% of the initial mass for the coarse particle fraction still suspended at t = 10, while
in t = 20 there is less than 8% of the initial material, and for t = 40 this reaches less than 1%. There are weak differences
among the simulations for the suspended mass of coarse particle fraction.

Analyzing the suspended mass for fine particle fraction, Fig. 4.b, notice that there is also a decrease after the beginning
of the flow, although it is less impactful than the one suffered for coarse particle fraction. At t = 10 the simulation which
has the great decrease is DNS1, with 80% of the initial mass still suspended, for the other simulations, this value fluctuates
between 91% and 93%. In t = 20, around 63% of the initial quantity of particle fraction keeps suspended for simulation
DNS1 e between 73% and 75% for the others, although this decrease is smaller than what happened for coarse particle
fraction. At t = 40 there is less than 1% of the total coarse particle fraction suspended, but more than 43% of the total
fine particle fraction is kept suspended. At the end of the computational time, (t = 90), 7% of the fine particle fraction
remains suspended. This aspect is a characteristic of the particle fine fraction because the fact that they stay suspended for
more time makes them the principal mechanism to keep the density gradient, allowing the flow to reach greater distances.
This has already been observed experimentally by Gladstone et al. (1998) and computationally by Francisco et al. (2017).
Looking at the effect of the Schmidt number it is noticed there is a decrease in the particle fraction suspended at end of
the simulation as it increases the Schmidt number. In the end of the computational time (t = 90) the simulations DNS1,
LES1, LES2, and LES3 posses respectively 15.16%, 17.30%, 14.98%, and 7.58% of the initial mass still suspended.
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Figure 5. Final deposit profile for the four simulations compared with the reference experiment of Gladstone et al. (1998).
All curves are normalized by the volume of deposit at end of the simulation, t = 90. The initial position x1 = 0 was

chosen as gate position.

Figure 6. Temporal evolution of energy budget for the four simulations. Dotted curves correspond to simulation DNS1,
dashed lines correspond to simulation LES1, dashdot curves correspond to simulation LES2, and solid lines correspond to

simulation LES3.

In Figure 5 the average profiles of deposit height for the four simulations are plotted compared with the reference
experiment of Gladstone et al. (1998). All curves are normalized by the volume of deposit at end of the simulation
(t = 90). Comparing the deposit profiles with the reference it is observed a good agreement. The peaks that occurred
for x1 < 2, are probably related to the Kelvin-Helmholtz vortex since those vortexes can enhance the particle deposition
when passing near the bottom. It is observed that most of the deposit was formed close to the gate, which is common for
this kind of configuration. Analyzing the effect of mass diffusivity notice that there is a tendency to smooth the peaks with
the Schmidt number increase. Comparing the simulations DNS1 with LES1 there is a mean difference of 0.75%. This
indicates that the LES approach can reproduce a deposit profile similar to the one generated by a DNS simulation.

3.4 Energy budget

The temporal evolution of budget energy flow for the four simulations is plotted in Fig. 6. All curves are normalized
by total energy at the beginning of the simulation Et0 (t = 0).

Observing the curves for potential Ep/Et0 and kinetic energy K/Et0 , Fig. 6.a, at t = 0 the potential energy is
maximum while the kinetic energy is minimum. After the mixture starts to flow the potential energy begins to suffer a
great decrease, whereas the kinetic energy increases quickly, reaching its peak at t = 2 with around 52% of total initial
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energy. Although, after getting this peak the kinetic energy suffers a decrease due to the dissipation effects which gain
more importance in the energy budget. At the end of simulation (t = 90) the potential energy for simulations DNS1,
LES1, LES2, and LES3 are respectively 2.45%, 2.73%, 2.18%, and 0.85%, and for the kinetic energy are 1.82%, 1.7%,
2.07%, and 1.38%, respectively.

Analyzing the curves for turbulence energy dissipation Ed/Et0 and for microscale dissipation Est/Et0 , Fig. 6.b, it
is noticed that the term Ed/Et0 have more importance in the dissipation’s effects. At t = 90 the value of the dissipation
due to turbulence for simulations DNS1, LES1, LES2, and LES3 are respectively 59.08%, 58.06%, 58.81%, and 62.93%
of total initial energy, while for microscales effects are respectively 35.11%, 37.07%, 36.14%, and 35.87%. Looking at
the influence of the Schmidt number, it is observed that by increasing this parameter the term Ed became more relevant
in the budget energy, especially when there is an increase in the Schmidt number between simulations LES2 to LES3.

4. CONCLUSION

Simulations of bi-disperse particle-laden gravity currents are performed in the lock-release configuration using DNS
and LES approach. The goal of this study is to analyze the effect of different Schmidt numbers on the flow dynamics
and the formation of his deposits. So simulations with unique and different mass diffusivity are performed with the
same Reynolds number of 5000. To quantify the study some features of the current are calculated like the front head
position, the suspended mass, and the average height profile of the deposit. Also, it is computed the temporal evolution
of the energy budget. The results are in good agreement with the experimental results of Gladstone et al. (1998). For the
front head position, the effect of using different values for the two-particle fractions has a great impact on the temporal
evolution of the flow, with the flows with double mass diffusivity reaching greater distance compared with the flows
with unique Schmidt number at end of the simulation. Although, increasing the Schmidt number does not cause a great
difference between the simulations LES2 and LES3. For the suspended mass the quantity of coarse particle fraction is
almost deposited at t = 40, with less than 1% of the initial quantity of coarse particle fraction still suspended, in the other
hand the fine particle fraction keeps a significant quantity of the original material still suspended at end of the simulation,
between 7% and 15%. Analyzing the effect of the Schmidt number in the suspended mass it is noticed that increasing this
parameter will be more fine particles fraction deposited at end of the simulation. The average deposit profile shows good
agreement with the experimental results, it is observed that increasing the Schmidt number more smooth the peaks of the
deposit will be. For the energy budget, it is observed that the dissipation relate to turbulence is the principal mechanism
of energy loss and gains more relevance as it increases the Schmidt number.
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