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Abstract. Hot-wire anemometers are one of the main tools used in the measurement of rapid velocity fluctuations in lab-
oratory and natural flows. Their measurement frequency, which can reach the order of kilohertz, allows the investigation
of turbulence fluctuations down to the smallest (dissipative) scales, providing a comprehensive description of turbulent
flows. In this study, synthetic data that mimic hot-wire time-series velocity measurements are used to investigate random
errors and their impact on turbulence statistics. The synthetic data are obtained from a prescribed three-dimensional
energy spectrum, which includes the production, inertial and dissipation ranges, in addition to the bottleneck and inter-
mittency effects, superposed by random errors typical of real data. The theoretical spectrum has a predefined Reynolds
number, dissipation rate and mean streamwise velocity. From this spectrum, single-point time-series of the three velocity
components are obtained from the inverse Fourier transform, assuming a homogeneous, isotropic and stationary flow.
The probability distribution of turbulence statistics impacted by the random errors can be readily calculated from the
synthetic time-series using the Monte-Carlo method. Examples of statistics include the dissipation rate estimated from
energy spectra or second-order structure functions, providing useful information on error and bias. Finally, the method
can serve several purposes, including educational training, code verification and validation, experiment planning, and
testing and visualization of other types of measurement errors.
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1. INTRODUCTION

Due to its non-linear and chaotic nature, the study of turbulence relies on theories requiring validation or correction
by experimental data. One classical example is the Kolmogorov’s model for the inertial range of the energy spectrum.
In brief, the concept of the energy cascade can be quantitatively described using three hypotheses: (i) that at sufficiently
high Reynolds number, the small scales are isotropic (creating the local isotropy concept); (ii) that the smallest scales
have a universal form uniquely determined by the fluid’s kinematic viscosity ν and the turbulence kinetic energy (TKE)
dissipation rate ε (defining the viscous scales, also known as the Kolmogorov scales, η ≡ (ν3/ε)1/4, uη ≡ (εν)1/4 and
τη ≡ (ν/ε)1/2 for length, velocity and time, respectively); and (iii) that the scales ` in the range `0 � `� η (where `0 is
the largest scale of the flow) are uniquely determined by ε, independent of ν (Pope, 2000). As a result, the intermediate
range of scales dominated by the energy cascade is characterized by a three-dimensional energy spectrum E(κ) and
second-order structure functions D(r1) in the form

E(κ) =Ckε
2/3κ−5/3, (1)

D11(r1) =C1(εr1)2/3, (2)

D22(r1) =
4

3
C1(εr1)2/3, (3)

whereD11 andD22 are the longitudinal and transversal structure functions, respectively, κ is the wavenumber correspond-
ing to 2π/`, r1 is the longitudinal distance, and Ck and C1 are empirical constants. The relevance of this model cannot
be overstated. In addition to providing a signature of turbulence in a otherwise chaotic dataset, it also carries relevant
information such as the TKE dissipation rate, which is typically difficult to measure directly. A drawback of the theory
is the uncertainty on the empirical constants (Sreenivasan, 1995), in addition to the loose definition of “sufficiently high
Reynolds number” (Antonia et al., 2019), both of which have been extensively investigated but are still open for debate.

The investigation of this and many other turbulent theories require extensive measurements of different types of flows.
In order to capture most, if not all, turbulence scales, hot-wire sensors have been widely used in both laboratory and
field measurements (Vukoslavčević et al., 1991; Saddoughi and Veeravalli, 1994; Metzger and Klewicki, 2001; Kang
and Meneveau, 2006; Hutchins and Marusic, 2007; Metzger et al., 2007; Folz and Wallace, 2010; Sinhuber et al., 2017;
Küchler et al., 2019). Hot-wires are very fine wire sensors able to measure small-scale velocity fluctuations at frequencies
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in the order of kilohertz. These anemometers are based on the concept of variation of the electrical resistance with
temperature, through the use of a heated wire that senses the changes in heat transfer caused by fluctuations in the fluid
velocity. Therefore, the output of the sensor is a time series of voltage that can be directly related to the time series
of velocity fluctuations through the use of a calibration curve. One requirement for this method, however, is that the
temperature, composition, and pressure of the fluid are constant, making the fluid velocity the only variable affecting the
heat transfer (Lekakis, 1996). Although these conditions can usually be controlled in the laboratory, they are rarely met
in the outdoor environment, which is a potential source of measurement errors. Furthermore, errors in calibration curve,
low measurement frequency and many other possible sources of errors can impact the estimated turbulence parameters in
ways that can be difficult to infer. Therefore, having a simplified tool that can help access errors and biases in this type of
measurement can be useful in the interpretation of experimental data.

The impact of a Reynolds number that is not “sufficiently high” on turbulence statistics is also a potential source of
error. Because the models for the inertial range (Eqs. (1)–(3)) are so simple, they are usually used isolated from the large
(integral) and dissipative scales of the spectrum (or structure function). However, as discussed in details by Antonia et al.
(2019), only at extremely large Reynolds numbers the Kolmogorov’s hypotheses are valid, and a clear inertial range in
experimental data may be difficult to obtain. To visualize the effect of a finite Reynolds number on the inertial range,
a model spectrum such as the one proposed by Meyers and Meneveau (2008) can be used. In addition to the integral
and dissipation ranges, this model includes the intermittency and bottleneck effects, which also impact the inertial range
behavior. From the model spectrum, it is possible to generate synthetic single-point time-series data that possess the
prescribed spectrum and, consequently, the corresponding second-order structure function. Furthermore, it is possible to
include in the model spectrum random errors and any other artifact that mimics errors of real experimental data, and any
statistics calculated from the synthetic time series (structure function, dissipation rate, etc.) can be compared to “the truth”
(the prescribed values) in order to estimate the error and bias on each estimation (Freire et al., 2019).

In this study, the model spectrum of Meyers and Meneveau (2008) is superposed to typical random errors present in
measurements from hot-wire anemometers in order to investigate errors and biases in turbulence statistics extracted from
measurement data. The methodology is presented here as a proof of concept, which can be easily extended to other types
of problems. To exemplify, the impact of random errors on the estimation of the TKE dissipation rate is tested here. Other
potential application are mentioned in the Conclusion section.

2. METHODS

2.1 Meyers and Meneveau (2008)’s model spectrum

The model spectrum proposed by Meyers and Meneveau (2008) is defined as

E(κ) =Ckε
2/3κ−5/3(κL)−βfL(κL)fη(κη), (4)

fL(κL) =

{
κL

[(κL)p + α5]1/p

}5/3+β+2

, (5)

fη(κη) = exp(−α1κη)

[
1 +

α2(κη/α4)α3)

1 + (κη/α4)α3

]
, (6)

in which L is the integral length scale, β is the intermittency correction for the inertial-range slope and fL and fη are
non-dimensional functions representing the integral and dissipation scales, respectively. The main contributions from this
approach compared to other models (such as Pope (2000)’s model spectrum) are the parameterization of the intermittency
and bottleneck effects, the latter being the spectral bump at the transition between the inertial and dissipation scales,
modeled by the term multiplying the exponential function in Eq. (6).

In addition to the flow scales L and η, related to the Reynolds number Re and TKE dissipation rate ε, the values of
α1–α5 need to be prescribed in order to close the model. For a given Reynolds number, five flow constraints are used
to obtain these constants, namely the total energy, enstrophy and palinstrophy from their corresponding integrals of the
energy spectrum (E(κ), κ2E(κ) and κ4E(κ), respectively), combined with the constraint for the height and location
of the intermittency corrected dissipation peak (Eqs (6)-(8) and (11) of the original study). Therefore, the values of the
Reynolds number, dissipation rate, and the derivative skewness (for the palinstrophy constraint) S3 need to be chosen. In
this study, the values of Reλ = 5900 and 21180 were chosen from the atmospheric data measured by Tsuji (2004), which
also provided the dissipation rate and mean streamwise velocity (needed for the Taylor’s frozen turbulence hypothesis).
Since it was not provided in the experiment, the value of S3 ≈ −0.53 was chosen (Sreenivasan and Antonia, 1997).
The parameters p = 1.5 and β = µ/9 (where µ = 0.25 is the standard empirical value of intermittency exponent) were
selected as in Meyers and Meneveau (2008). The Kolmogorov constant Ck = 2.3 was used as in the modeling of the
same Tsuji (2004)’s data by Meyers and Meneveau (2008). Table 1 provides the model parameters for the present study,
in which α1–α5 were obtained by solving their equations using the GNU Octave software (Eaton et al., 2020).

From Meyers and Meneveau (2008)’s model, the following relations are used to obtain (numerically) the one-dimensional
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Table 1. Parameters α1–α5 of the Meyers and Meneveau (2008)’s model estimated for Tsuji (2004)’s atmospheric data
Reλ, ε and u1. Measurement length and frequency used for the synthetic data generation.

Reλ 5940 21180
u1 [m s−1] 2.82 7.66
ε [m2s−3] 0.0106 0.0760
α1 5.01947 5.79054
α2 2.90729 5.46142
α3 2.17082 1.40221
α4 0.13380 0.25055
α5 5.79054 5.83688
measurement length (min) 30 15
measurement frequency (kHz) 2 4

energy spectra and second-order structure functions for each velocity component (Pope, 2000):

E11(k1) =

∫ ∞
k1

E(κ)

κ

(
1− k21

κ2

)
dκ, (7)

E22(k1) = E33(k1) =
1

2

(
E11(k1)− k1

dE11(k1)

dk1

)
, (8)

Dαα(r1) = 2

∫ ∞
0

Eαα(k1)[1− cos(k1r1)]dk1, α = 1, 2 or 3, (9)

in which k1 is the longitudinal wavenumber. Equations (7) and (8) are only valid for locally homogeneous and isotropic
flows (Hill, 1997); therefore, the model predictions presented here are only meaningful within the scales for which local
isotropy is a reasonable assumption. Figure 1 shows the models for the twoReλ cases tested here. Note that, in the typical
log-log plot, the inertial range seems to cover several decades for both cases. In order to better visualize the errors in the
inertial range, compensated functions in a linear-log plot will be presented in the Results section.
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Figure 1. Meyers and Meneveau (2008)’s model for (a) three-dimensional energy spectrum (E(κ)), one-dimensional lon-
gitudinal (E11(k1)) and transversal (E22(k1)) spectra and (b) Longitudinal (D11(r1)) and transversal (D22(r1)) second-
order structure functions. Red and blue lines correspond to Reλ = 21180 and 5940, respectively. Black lines correspond

to κ−5/3 and r2/31 .

2.2 Synthetic time series

From a prescribed one-dimensional spectrum for each velocity component, a corresponding synthetic random velocity
time-series is obtained as

usi (t) = Re
{

FFT
{

[Si(f)∆f ]1/2
√

2 exp(iφ(f))
}}

, (10)

where Re{ } denotes the real part of a complex number, FFT{ } is the fast Fourier transform, Si(f) is the desired spectral
density of usi (t) as a function of the frequency f , ∆f is the frequency increment and φ(f) is a random variable uniformly
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Figure 2. Example of synthetic time series us1(t) and its corresponding frequency spectrum F11(f).

distributed between zero and 2π, used to obtain independent random phase angles that create the velocity fluctuations
in the time domain (Shinozuka and Deodatis, 1991). The result is a time series with spectral density exactly equal to
Si(f) (except for numerical truncation). In order to evaluate the random errors of real hot-wire data, we define Si(f) =
Fαα(f) + σ(f)y, where Fαα = Eαα(k1)2π/u1 (spectrum in the frequency domain from the spectrum in wavenumber
domain using Taylor’s frozen turbulence hypothesis, α = 1, 2), u1 is the mean longitudinal velocity, σ(f) is the standard
deviation of a real spectrum and y is a random variable. As in Freire et al. (2019), we use the quasi-normal hypothesis and
assume that the standard deviation of the spectrum is equal to its mean value, making Si(f) = Fαα(1 + y). In addition,
2(y + 1) follows a chi-square distribution with two degrees of freedom, making y a random variable with zero mean and
variance equal to one. Figure 2 illustrates a synthetic time series and its corresponding frequency spectrum F11(f), which
has the level of random error typically present in experimental data (Freire et al., 2018, 2019).

3. RESULTS

As indicated in Fig. 2(b), the sample spectrum has a significant level of noise, requiring some averaging or smoothing
when used in turbulence studies. The second-order structure function, on the other hand, is a smoother function by
construction, since it corresponds to the integral of the spectrum (Eq. (9)). In a loose interpretation, we can say that,
although both functions describe the energy held at different scales, in the case of the spectrum it shows the energy at the
scale `1 = 2π/k1, while the structure function provides the energy of eddies with size r1 or less (Davidson, 2004, p. 467),
making the latter smoother. This difference is demonstrated by the average plus/minus one standard deviation of 1000
realizations, plotted in Fig. 3, and it is the reason that the structure function may be preferred over the spectrum in some
inertial-range analyses. However, this same integral nature makes the length of the inertial range smaller in Dαα(r1)
compared to Eαα(k1), which needs to be taken into account when interpreting this type of data, especially for lower
Reynolds numbers. In the case of Reλ = 5940, the inertial range of D11(r1) is arguably absent (Fig. 3(c,d)).

The presence of the bottleneck effect, which is included in the model spectrum and can be seen in Fig. 3(a,b) (the
bump in between the inertial and dissipation ranges), also impacts the length of the inertial range and potentially any
information extracted from it. In the compensated structure function, its presence can be better seen for Reλ = 21180 (at
r1 ≈ 0.02), whereas for Reλ = 5940 it is less clear, since the production range dominates the region where a flat profile
should be present (if the Reynolds number were “sufficiently high”).

Many tests regarding the impact of the random errors in the data can be performed. As a proof of concept, we show the
estimation of the TKE dissipation rate ε from the fit of Kolmogorov’s models (Eqs. (1) and (2)) to the inertial range of the
sample spectrum and longitudinal structure function. This indirect estimate is typically performed when the measurement
frequency is not high enough to capture all turbulence scales, a requirement in the estimation through the integral of the
dissipation spectrum or using the velocity gradient. Figure 4 shows the probability density function (PDF) of dissipation,
constructed from the 1000 realizations by matching Kolmogorov’s models with the synthetic spectrum/structure function
in the intervals 5 < k1 < 10 and 0.5 < r1 < 1, which is around the region where the inertial range is present (Fig. 3).
The spread in ε values, due to the random error in the velocity time series, is larger for the spectrum than the structure
function, as expected. Furthermore, there is a clear bias in all values obtained. The slightly positive bias in the spectrum
case is likely related to the bottleneck effect, whereas the significant negative bias in the case of the structure function is
probably caused by the finite Reynolds number effect, as it is more prominent for the lower Reynolds number. A more
detailed evaluation, including the impact of the inertial range interval, Reynolds number, dissipation rate, mean velocity
and many other parameters could be directly performed using the same approach.



13th Spring School on Transition and Turbulence
September 19th-23rd, 2022, Blumenau, SC, Brazil

Figure 3. Average (dark colors) plus/minus one standard deviation (lighter shades) of the compensated one-dimensional
spectra (a,b) and second-order structure functions (c,d) for Reλ = 21180 (blue, shifted by 0.5) and 5940 (red). Black
dashed lines correspond to the original models (Eqs. (7)–(9)). Vertical lines show the inertial range interval used for

dissipation estimate.

4. CONCLUSION

This study provides a proof of concept on how to obtain random synthetic time series of single-point turbulent velocity
measured by a hot-wire. The velocity data has a prescribed spectral density and the corresponding second-order structure
function, in addition to an imposed Reynolds number and TKE dissipation rate. By introducing errors in the prescribed
spectrum, such as random errors, path-averaging and aliasing effects, errors in the voltage-velocity calibration curve,
and many others, it is possible to investigate their effect on many statistics typically extracted from this type of data. In
addition, the tool can be used to test new methods of data analysis, as well as a learning tool on both turbulence theory and
data processing. Finally, the tool can be used to generate synthetic data for code verification and validation, in addition to
help in the planning of new experiments.
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Figure 4. Probability density function of the estimated dissipation rate ε normalized by the imposed value. Reλ = 5940
(red) and 21180 (blue), and estimates from the spectrum (solid) and second-order structure function (dashed lines).
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