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Abstract. In engineering projects, specifically in the mechanical area, it is indispensable to consider how the loads act on
the components, because they can present themselves in different ways and cause abrupt failures. Therefore, the study that
promotes the development of safe structures and with a longer useful life, is of significant importance. In this work, using
the modified Goodman criterion, fatigue damage is evaluated in a cantilever beam with a hole in the domain subjected to
different load conditions. The formulation of the finite element method and the mentioned failure criterion are presented.
The stress field is obtained using a linear quadrilateral element, with four nodes per element and two degrees of freedom
per node. The results obtained in computer programming, show the effect of fatigue in the structure for three different
load conditions, it is evidenced greater resistance to failure in application of distributed load and lesser resistance under
oblique point load.
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1. INTRODUCTION

According to Callister and Rethwisch (2018), fatigue is a form of failure that occurs in structures subjected to dynamic
and fluctuating stresses. The fatigue studies on structures have been carried out since the 19th century in the West, after
several disastrous railway accidents, but only in the 1990s did the subject gain greater attention. This is mainly due to
the growth in the use of critical components in industries such as automotive, high-speed rail and aerospace (Smith and
Hillmansen, 2004). Over the last decades, several numerical modeling techniques have been used to analyze the behavior
of complex structures, such as the Finite Element Method (FEM). Furthermore, the S-N curve of the structure or its critical
details can be estimated from basic information about the fatigue strength of the material, reducing the time and cost of
experimental tests.

Deng et al. (2021) applied the FEM to fatigue failure studies of Cement Asphalt mortar (AC mortar) on train tracks.
In this work, the high cycle fatigue damage constitutive relationship of the mortar is developed as a material subroutine
that incorporates the effects of several key factors in the finite element model: such as voids, initial deterioration and
the effect of load of the wheel in the accumulation of fatigue damage in the AC. Pathak et al. (2014) investigated the
fatigue of homogeneous and bimaterial plates with interfacial cracks under mechanical and thermal loads based on the
Galerkin method. Kumar et al. (2015) modeled the propagation of cracks in a single element of isotropic and bimaterial
materials in the presence of inclusions and voids. Bhardwaj et al. (2015, 2016) analyzed the interfacial crack problem of
heterogeneous materials and materials with two-layer functional classification based on extended isogeometric analysis.

In more recent works, researchers began to employ topology optimization techniques to improve the performance
of structures subject to fatigue. Nabaki et al. (2018) applied the Bi-directional Evolutionary Structural Optimization
(BESO) method to minimize fatigue-restricted structural volumes. In addition to the highly nonlinear behavior of stress
with respect to design variables, static and dynamic failure problems include stress singularities and many constraints.
Therefore, the application of fatigue constraints in topology optimization is considered a complex engineering problem
due to the nonlinear nature of the constraints. In this article, the FEM will be used to analyze the fatigue damage of
continuous structures under different loading conditions based on the modified Goodman criterion.

2. METHODOLOGY

2.1 Finite Elements - Quad4 Linear Element

The finite element method is the discretization numerical technique adopted in this work, using the linear elastic
quadrilateral plane isoparametric finite element with four nodes and two degrees of freedom (displacements in the vertical
and horizontal directions) per node. Each element of the system is associated with a stiffness matrix, called an elementary
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matrix given by (Petyt, 2010):

K(e) =

∫ +1

−1

∫ +1

−1

hBTDB det[J]dξdη, (1)

where h is the out-of-plane thickness, B, D and J are the strain, elasticity and Jacobian matrices, respectively. Fur-
thermore, ξ and η are defined as the isoparametric coordinates. In the treatment of FEM, the equilibrium equation for a
structure under static load is given by:

KU = F, (2)

being K the global stiffness matrix of the structure, U the vector of nodal displacements and F the vector of nodal forces.

2.2 Fatigue Theory

The fatigue degradation process is associated with deterioration under cyclic loading. To assess the damage, the High
Cycle Fatigue (HCF) regime is employed with constant amplitude proportional sinusoidal loading conditions, as shown in
Fig. 1a, where Fmax and Fmin are the maximum and minimum applied load, respectively. The stress state history shown
in Fig. 1b is obtained by applying a sinusoidal load to the structure and then calculating the stress amplitude (σa) and the
mean stress (σm) from the maximum stress value (σmax) and the minimum stress value (σmin).
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(b) One cycle stress history.

Figure 1: One cycle of the stress history in HCF.
Source: Adapted from Nabaki et al. (2019).

As a way of reducing the complexity of the dynamic evaluation, the adaptations proposed by the equivalent static
analysis are adopted, where F = Fmax is statically applied to obtain the stress distribution. In this sense, the stress
vectors, σi, are calculated at the center of the element as follows:

σi = DiBiui, (3)

where, ui is the vector of nodal displacements for element i. The alternating and mean stresses are calculated from the
stress values expressed as:

σai
= caσi =

 σxai

σyai

τxyai

 and σmi
= cmσi =

 σxmi

σymi

τxymi

 , (4)

where, ca and cm are amplitude and mean stress scaling factors, respectively, given by:

ca =
1− (Fmin/Fmax)

2
and cm =

1 + (Fmin/Fmax)

2
. (5)

The von-Mises stress calculation is used to calculate the mean and alternating stresses of the elements as follows:

σvonMises
ai

=
√

σ2
xai

+ σ2
yai

− σxai
σyai

+ τ2xyai
,

σvonMises
mi

=
√

σ2
xmi

+ σ2
ymi

− σxmi
σymi

+ τ2xymi
.

(6)

The evaluation of fatigue failure is realized by applying the modified Goodman criterion expressed by:

LGM
i (x) =

σvonMises
ai

(σi)Nf

+
σvonMises
mi

σut
≤ 1. (7)
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For the application of principal stresses, the criterion is represented in another way, as revealed in Fig. 2, where the
alternating stress is limited by the critical fatigue stress ((σi)Nf

), considering an infinite number of life cycles (Nf > 107).
To avoid fatigue failure, all combinations of alternating and average stresses for all elements of the structure must be within
the gray area of the diagram (Fig 2), where σut and σy represent ultimate and yielding stress, respectively.

σa(MPa)
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−σy σy

σNf

σut
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σm(MPa)

Figure 2: Modified Goodman Diagram.
Source: Adapted from Nabaki et al. (2019).

The value of the (σi)Nf
alternating stress is obtained by the Basquin equation (Nabaki et al., 2019):

(σi)Nf
= σ′

f (2Nf )
b
, (8)

in this expression σ′
f and b are the coefficient and exponent of fatigue strength, respectively.

To verify the structure’s resistance to failure, three different combinations of mean and alternating principal stresses
are considered, where the results of these combinations in each element are placed in the diagram. The three combinations
are written as follows (Nabaki et al., 2019):

Combination 1:

σa =
√
σ2
1a + σ2

2a − σ1aσ2a and

σm =
√

σ2
1m + σ2

2m − σ1mσ2m .
(9)

Combination 2:

σa =
√

σ2
1a + σ2

2a − σ1aσ2a and

σeq
m = σ1m + σ2m .

(10)

Combination 3:

σa =
√

σ2
1a + σ2

2a − σ1aσ2a and

σ signed vonMises
m =

{√
σ2
1m + σ2

2m − σ1mσ2m if |σ1m| ≥ 0

−
√
σ2
1m + σ2

2m − σ1mσ2m if |σ1m| < 0
.

(11)

In this approach, the mean stress can also assume negative values, representing the material under compressive cyclic
loading conditions, a generic characteristic of most dynamic loads.

2.3 Computational Implementation

Based on the finite element formulation, in a MATLAB environment, presented by Picelli et al. (2020), available at
the link (here), the routine for calculating stresses and the modified Goodman criteria are implemented. After insert-
ing the geometric parameters, material and load and boundary conditions to the pre-processing of the aforementioned
computational programming, the fatigue results of the structural problem are obtained.

3. RESULTS

The computer code validation step is presented in a previous work entitled Fatigue Analysis Using The Finite Element
Method (Pereira et al., 2021) by the present authors. For current analysis, a cantilever beam containing a hole in the

https://github.com/renatopicelli/tobs/tree/master/FEA
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domain is considered, the dimensions, boundary conditions and load are shown in Fig. 3. The out-of-plane thickness,
modulus of elasticity and Poisson’s ratio are defined as 1mm, 210GPa and 0.3, respectively. The load is applied with
Fmax = 300N and Fmin = 800N in three different ways, first as a vertical point load (Fig. 3a), second as an inclined
point load at θ = 45◦ (Fig. 3b) and lastly as a distributed load w = 8N/m (Fig. 3c). To construct the failure criteria
diagrams, the parameters σ′

f = 493MPa, σut = σy = 358MPa, Nf = 107 and b = −0.086 are used. Furthermore, a
discretization with Quad4 elements (1mm x 1mm) is used.
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(c) Distributed load.

Figure 3: Beam clamped under three loading conditions.

Therewith, the results shown in Fig. 4 are obtained. In these graphs, the effects of stress concentration around the
applied point load are disregarded, ten elements in the proximities of the force are excluded from the failure criteria. The
colors in the geometry domain (Fig. 4a, 4b and 4c) represent the fatigue damage in the structure, thus highlighting the
critical regions of the structure, LGM

i values greater than one indicate fatigue failure. The Figures 4d, 4e and 4f present
the modified Goodman diagram, which considers the fatigue analysis from the mean and alternating principal stresses.
In these figures (4d, 4e and 4f), points outside the safe zone of the diagram, that is, outside the region delimited by the
dashed line, indicate fatigue failure.
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(d) Diagram - transverse load.
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(e) Diagram - inclined load.
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(f) Diagram - distributed load.

Figure 4: Fatigue in a cantilever beam.

The results in Fig. 4a and 4d refer to the application of the vertical point load. It can be seen from the color map
that the structure is more affected in the regions of the vertices connected to the clamp. Figures 4b and 4e present the
responses due to the application of the inclined point load, in the color distributions, more expressive damage is observed
in a region tangent to the hole. In the responses considering the load as distributed are shown in Fig. 4c and 4f, greater
requests can be observed in regions located around the hole. The case with highest LGM

i values among the three cases,
the acting of the inclined load, causes more expressive damages.

As demonstrate the Fig. 4a and 4b, in the two cases there is fatigue failure since they present LGM
i values greater

than one, the same conclusion can be made when evaluating Fig. 4d and 4e, they show in the modified Goodman diagram
points outside the safe zone. On the other hand, Fig. 4c and 4f show that by distributing the loading along the entire length
of the structure, fatigue failure does not occur. In view of the foregoing, it is clear that fatigue failure can be significantly
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affected with alterations in load application conditions.

4. CONCLUSIONS

Fatigue damage in a cantilever structure subjected to different load conditions was evaluated using the modified Good-
man failure criterion with the application of FEM. The acting of a certain loading was considered in three ways: vertical
punctual, oblique punctual and distributed. In the first, the structure is more affected in the regions of the vertices con-
nected to the crimp, in the second, there is a certain region tangent to the most required hole, in both load applications
fatigue failure was verified, with more expressive damage under inclined load. Lastly, in the case of distributed loads,
there was no failure, the greatest solicitations are located in regions around the hole. Therefore, it is noted that fatigue
damage can be significantly affected with alterations in the conditions of acting of external loads.
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