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Abstract: In the context of passive damping, various mechanical systems from aerospace or automotive industries use
elastomer components (shock absorbers, silent blocks, flexible joints, etc.). The frequency and temperature dependence
of the constitutive behavior of these devices, as well as their complex geometries, lead to costly numerical models. The
aim of this work is to propose reduced order models of elastomer damping devices taking into account their complex
geometries and their dissipative material behavior. A finite element model of 3D rubber dampers is firstly developed
using a fractional derivative viscoelastic constitutive model identified from Dynamic Mechanical Analysis (DMA). An
efficient reduced model is then derived from this FE model by using an original extension of the sub-structuring Craing-
Bampton method in the case of viscoelastic damping. This approach consists in choosing a combination of static
and dynamic modes, the latter being obtained from real eigenvalue problems adapted for highly damped structures.
Moreover, the super-element is defined by considering that the device’s interfaces are much more rigid than the rubber
core. Consequently, a kinematical constraint is employed to enforce rigid body motion of the sub-structure interfaces.
The combination of these techniques leads to a twelve degrees-of-freedom super-element replacing the initial full model.
As an application, the dynamic response of a structure supported by four hourglass shaped rubber devices under
harmonic loads is analyzed to show the efficiency of the proposed approach.
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INTRODUCTION

Due to their capacities to dissipate energy, elastomers are highly used in damping devices like silent blocs or joints. A
typical example of this use is found in the spatial industry: during takeoff and flight, launchers are subject to a significant
amount of vibrations from either the propulsion engine or the acoustical environment. Shocks may also occur during the
pyrotechnic separation of the different floors of the launcher. All these vibration sources may damage the satellite or any
other sensitive equipment onboard, and a common solution is to use viscoelastic damping devices to dissipate a part of
the mechanical energy.

The design of theses damping devices is usually done by using the finite element method. The computational cost
of the associated models may become prohibitive for example during an optimization process. Many solutions already
exist to reduce the numerical model of linear undamped structures, but only a few give access to reduced order models
with damping behavior, especially when it comes from viscoelasticity which may be seen as a strong form of damping.
Two types of solutions for the reduction of viscoelastic models can be found in the literature. The first one consists
in the replacement of the damping device model by an equivalent rheological model which can be identified through
a series of experimental measurements on the damper. The main problem with this approach is that the behavior of
the rheological model may not fit the real behavior of the damper in all directions, and more importantly necessitate
experimental identification for each new device and consequently can’t be used for optimization purpose. The second
one, which is chosen in this work, is to use a finite element model of the damper and to achieve the reduction using a
substructuring based for example of the Craig-Bampton method.

The original Craig-Bampton method (Craig and Bampton, 1968) uses a combination of static and dynamic modes
to reduce the finite element model of a sub-structure to a smaller finite element model called super-element. Here we
propose a modified Craig-Bampton method taking into account the frequency dependence of the mechanical properties.
This approach, based upon the work of Rouleau, Deü and Legay (2014), consists in choosing a modal projection basis well
adapted to highly damped structures. Moreover, the super-element is obtained by considering that the device’s interfaces
are much more rigid than the rubber core. To make use of this difference, a kinematical constraint is employed to enforce
rigid body motion of the sub-structure interfaces (Morin, Legay and Deü, 2016). The combination of all these techniques
leads to a twelve dofs super element (three rotations and three translations per face) replacing the initial full model. As an
application, the dynamic response of a structure supported by four hourglass shaped rubber devices under harmonic loads
is analyzed to show the efficiency of the proposed approach.
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Figure 1 – Full structure mounted on four dampers, and details of a damper

PROBLEM UNDER STUDY AND VISCOELASTIC MODEL

The complete model is composed of a support structure mounted on four hourglass shaped dampers, as seen on Fig. 1.
The support structure is made of aluminum and the dampers are made of two aluminum thin interface plates and an
elastomer core. Two different material models are used in this work: a linear elastic Hooke’s model is chosen for the
aluminum, and a viscoelastic fractional derivative model, initially proposed by Bagley and Torvik (1983), is chosen for
the elastomer. In this paper, the four-parameter fractional Zener model is considered to define the complex frequency
dependent shear modulus G∗(ω):

G∗(ω) =
G0 +G∞(iωτ)α

1+(iωτ)α
(1)

where G0 and G∞ are respectively the static modulus G0 = G∗(ω → 0) and the high frequency limit of the dynamic
modulus G∞ = G∗(ω → ∞), τ is the relaxation time and α is the order of the fractional derivative. More information
about this model, its identification and its finite element implementation in time domain can be found in (Galucie, Deü,
Ohayon, 2004).

In the frequency domain, the finite element model can be written in the following form:(
Ke +Kv

sph +
G∗(ω)

G0
Kv

dev−ω
2M
)

u = f (2)

where M is the mass matrix, Ke is the purely elastic part of the stiffness matrix which is assembled on the aluminum
interfaces dofs and Kv is the viscoelastic part of the stiffness matrix which is assembled on the elastomer core dofs.

In the previous equation, the viscoleastic stiffness matrix is separated into a spheric part Kv
sph and a deviatoric part

Kv
dev. This separation is used due to the fact that the viscoelastic behavior of elastomer is mainly caused by distorsional

strain (not by volume change). The adimensional viscoelastic modulus G∗(ω)/G0 is also used in the dynamic equation to
clearly shown that the frequency dependence appears only in a scalar function, all the matrices being real and frequency-
independent. Since the deviatoric stiffness matrix is the only matrix subjected to the complex modulus G∗(ω), the dynamic
equation can also be expressed in terms of a static stiffness matrix K0 and a frequency dependent stiffness matrix K∞:(

K0 + iωh∗(ω)K∞−ω
2M
)

u = f (3)

where K0 = Ke +Kv
sph +Kv

dev and K∞ = (G∞/G0−1)Kv
dev and where h∗(ω) is a dimensionless frequency dependent

modulus:

h∗(ω) =
τα(iω)α−1

1+(iωτ)α
(4)

The material parameters used to build the mass and stiffness matrices are given in Tab. 1 for the aluminum and Tab. 2 for
the elastomer. The structure is composed of 7540 nodes for each rubber damper, which is enough to get converged results
in the frequency range of interest, and 3200 nodes for the upper aluminum structure. Only the computational cost of the
dampers model is studied and reduced here, so the mesh of the upper structure is kept small for convenient computation
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time. Each damper represents 22620 dofs. The total number of dofs in the complete structure is about 105, including
more than 90% for the dampers only, thus underlining the need for an efficient reduction method. The finite element code
for this study is an in house program developed in both Python and Fortran. The finite elements are 8 nodes hexahedra
anywhere in the structure. Rubber dampers are connected to the aluminum structure through their upper interface.

Table 1 – Material parameters of the aluminum.
Parameters Values

E 70 GPa
ν 0.3
ρ 2700 kg·m−3

Table 2 – Material parameters of the elastomer.
Parameters Values

E 0.947 MPa
ν 0.45
ρ 1000 kg·m−3

G0 0.327 MPa
G∞ 0.126 GPa
α 0.3
τ 0.52 µs

MODEL ORDER REDUCTION

Two reduction steps are used in this study. The first one is a kinematical constraint that makes use of the difference
of stiffness between the rubber core and the aluminium interface of the dampers. This constraint is used to reduce the
interface dofs. The second step consists in the reduction and the condensation of the internal dofs of the elastomer core to
their previously reduced interface dofs.

Rigid interfaces assumption

Due to the difference between the aluminum and the elastomer stiffness, the aluminum interfaces may be considered
to be rigid compared to the rubber core. A kinematic constraint is used to enforce the rigid body motion of the interfaces.
The velocity of any point A of an interface can be written in terms of the velocity of the center C of the same interface
and the cross-product of the distance between point A and point C and the rotation Ω of the interface. This relationship
can be extended to the displacement within the context of small displacement, namely:

−→u A =−→u C +
−→
AC×−→Ω (5)

In matrix form, the same constraint is written by:

uA
vA
wA

=

1 0 0 0 (zA− zC) (yC− yA)
0 1 0 (zC− zA) 0 (xA− xC)
0 0 1 (yA− yC) (xC− xA) 0




uC
vC
wC
Ωx
Ωy
Ωz

 (6)

where x, y and z are coordinates in the 3D space, uX, vX and wX are the displacements of a point X following axes~x,~y
and~z, and Ωx, Ωy and Ωz are the interface rotation around the same axes. Following this approach, all interfaces dofs are
eliminated from the global finite element model dofs list, thus reducing the computational cost of the structure model. In
place of those eliminated dofs, each damper face is now represented by 6 dofs: 3 translational dofs and 3 rotational dofs
(see Fig. 2).

Model reduction of the core of the dampers

The method used here to reduce the damper finite element model combine the Craig-Bampton method (Craig and
Bampton, 1983) and a multi-model approach (Rouleau et al., 1994). In the case of a structure made of elastic and
viscoelastic materials, the dynamic equation is given by equation (3). Following the Craig-Bampton method, boundary
and internal dofs are separated. Here, the boundary dofs are the 12 dofs of the rigid interfaces noted uB and the internal
dofs are the remaining dofs of the dampers noted uI. This leads to write equation (3) as:([

K0
BB K0

BI
K0

IB K0
II

]
+ iωh∗(ω)

[
K∞

BB K∞
BI

K∞
IB K∞

II

]
−ω

2
[

MBB MBI
MIB MII

])[
uB
uI

]
=

[
fB
0

]
(7)
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Figure 2 – Model reduction strategy considering elastomer damping devices

where the right-hand side is only composed of reaction forces fB at the interfaces. The first part of the reduced basis is
composed of the static modes ΨIB which are defined by:

ΨIB =−(K0
II)
−1K0

IB (8)

The number of static modes is equal to the number of interfaces dofs, 12 in the present case. The second part of the
reduced basis is composed of the eigenmodes of the fixed interface problem solutions of the following generalised :(

K0
II + iωh∗(ω)K∞

II−ω
2MII

)
uI = 0 (9)

Solving equation (9) would lead to the vibration modes of the structure but due to the frequency dependence of the the
term iωh∗(ω), this eigenproblem is non-linear in frequency and can not be solved directly. The proposed solution is to use
a multi-model approach. It has been often used to represent non-linear dynamic systems by interpolating locally linear
models obtained from the sampling of the non-linear system. It has been applied by Rouleau et al. (1994) to build a
projection basis representative of the complex non-linear eigenvalue of equation (9). The multi-model basis is here built
by the combination of many smaller basis Φ(ωd) and each of these basis is computed by solving the pseudo-eigenvalue
problem (10) where only the real part of the equation is kept:(

K0
II +ℜ(iωdh∗(ωd))K∞

II−ω
2
k MII

)
Φk(ωd) = 0 (10)

where ωd values are chosen to sample the whole frequency range of interest. In any basis Φ(ωd) the modes are inde-
pendent but the modes from two different basis may be co-linear so a Gramm-Schmidt orthonormalisation algorithm is
necessary. In the literature, two modal basis evaluated at the minimum and the maximum frequency of the range of inter-
est combined with a static correction lead to a good approximation of the dynamic response of highly damped structures.
This choice of ωmin and ωmax (i.e. lower and upper limits of the frequency band of interest) can be not optimal in specific
problems but represents a pragmatic solution and will be validated in the numerical example. In this study, the static
correction is already taken into account by the attachment modes of the static response, so only the modal basis at the
minimum and maximum frequency need to be computed. Solving equation (10) for ωd = ωmin and ωd = ωmax lead to the
two basis Φmin and Φmax which both respect the orthogonality conditions:

Φ(ωd)
T

ℜ(KII(ωd))Φ(ωd) = diag
(
ω

2
1 , ...,ω

2
I
)

and (ωd)
TMIIΦ(ωd) = 1I (11)

where ωd stands for ωmin or ωmax and where:

KII(ωd) = K0
II + iωdh∗(ωd)K∞

II (12)

Both Φmin and Φmax diagonalize the ℜ(KII(ωd)) matrix but they don’t diagonalize K0 or K∞ and this will have an impact
on the further condensation step. The dynamic of the system is then reduced by truncating the basis Φmin into ΦIp and
the basis Φmax into ΦIq with p < I and q < I. The complete dynamic response is then obtained by combining the two
truncated modal basis ΦIp and ΦIq into matrix ΦIm, with m = p+q < I.

By combining the static response coming from the behavior of structures connected to the damper’s interfaces, and
the dynamic response from the core of the damper, a complete reduced basis can be assembled in the form:[

uB
uI

]
=

[
IBB 0Bm
ΨIB ΦIm

][
uB
qm

]
(13)

The projection of equation (7) onto this reduced basis gives the following reduced system:([
K̄0

BB K̄0
Bm

K̄0
mB K̄0

mm

]
+ iωh∗(ω)

[
K̄∞

BB K̄∞

Bm
K̄∞

mB K̄∞

mm

]
−ω

2
[

M̄BB M̄Bm
M̄mB M̄mm

])[
uB
qm

]
=

[
fB
0

]
(14)

where K̄∞

mB =
(
K̄∞

Bm
)T and M̄mB =

(
M̄Bm

)T.
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The details of the different terms of these reduced matrices are given by:

K̄0
BB = K0

BB +K0
BIΨIB (15)

K̄0
mB = Φ

T
Im
(
K0

IB +K0
IIΨIB

)
(16)

K̄0
mm = Φ

T
ImK0

IIΦIm (17)

K̄∞

BB = K∞
BB +K∞

BIΨIB +Ψ
T
IBK∞

IB +Ψ
T
IBK∞

IIΨIB (18)

K̄∞

mB = Φ
T
Im (K∞

IB +K∞
IIΨIB) (19)

K̄∞

mm = Φ
T
ImK∞

IIΦIm (20)

M̄BB = MBB +MBIΨIB +Ψ
T
IBMIB +Ψ

T
IBMIIΨIB (21)

M̄mB = Φ
T
Im (MIB +MIIΨIB) (22)

M̄mm = Φ
T
ImMIIΦIm (23)

It is also important to note that due to the multi-model approach used in the computation of the dynamic response, a major
difference arises between the method presented here and the usual Craig-Bampton: the classic method would results in
null matrix in place of K̄∞

mB and the blocks K̄mm and M̄mm would be diagonals which is not the case here.

Condensing the system on interfaces dofs

In order to further reduce the size of the system, it is proposed to condense the generalized unknowns qm on the
boundary dofs. The second line of system (14) gives the following relation between the generalized coordinates qm and
the interfaces displacements uB:

qm =−CmBuB with CmB =
(

K̄0
mm + iωh∗(ω)K̄∞

mm−ω
2M̄mm

)−1(
K̄0

mB + iωh∗(ω)K̄∞

mB−ω
2M̄mB

)
(24)

For the undamped case, the terms in the first parentheses are diagonal so the inversion is instantaneous, but in the
damped case these terms are non-diagonal and the inversion adds some computation time. In order to limit this cost, it is
possible to exploit the fact that the non-diagonal matrices are sparse. Replacing equation (24) into equation (14) leads to
a condensed system on the interfaces which is equivalent to a super-element where its dimension is equal to the number
of interface dofs (12 here):(

Ksuper(ω)−ω
2Msuper(ω)

)
uB = fB (25)

where the super-element mass and stiffness matrices are given by:

Ksuper(ω) = K̄0
BB + iωh∗(ω)K̄∞

BB−
(

K̄0
Bm + iωh∗(ω)K̄∞

Bm

)
CmB (26)

Msuper(ω) = M̄BB−M̄BmCmB (27)

APPLICATION TO THE SUPPORT STRUCTURE MOUNTED ON 4 DAMPERS

A comparison between the reference full finite element model and the proposed super-element is made. An harmonic
displacement is imposed on the structure lower interfaces, in a direction that is parallel to these interfaces: the dampers are
not moving up and down but rather in a left-forward/right-backward kind of motion. The frequency range is chosen from
0 Hz to 500 Hz and the resulting displacements at observation point P (see Fig. (1)), for both the full reference model and
the super-element, are plotted on Fig. (3). The displacement of point P for the full model without damping is also plotted
to show that the chosen viscoelastics parameters lead to a well damped structure. Two types of modes (damper only or
full structure) are shown in Fig. (4) and their frequencies are plotted in vertical line on Fig. (3).

One hundred modes are taken in the dynamic modal basis at null frequency in the multi-model approach. The high
number of modes needed here is due to the same stiffness difference that is exploited for the kinematical constraint of the
dampers interfaces: the stiffness of the elastomer core is so low that around a hundred modes are found in the frequency
range 0-500 Hz. The frequency limit chosen for the calculation of this modal basis is 512 Hz, which is roughly equal to
the max frequency of the frequency range, so the method is accurate.

For illustration purpose, mode shapes of the six attachment modes associated to the the lower interface of the elastomer
devices are plotted on Fig. (5). Moreover, the shapes of the first four fixed-interface normal modes of the elastomer
damping devices are plotted on Fig. (6).

For the second basis of the multi-model, the one that contains the pseudo-normal modes at the max frequency, only
ten modes are needed to give a good approximation. This is due to the fact that pseudo-normal modes are computed from
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Figure 3 – Normalized displacement of point P (see Fig. 1) for the reference undamped model (dotted line), the
reference damped (full line) and for the reduced model (cross-dotted line)

Figure 4 – Modes of the undamped full structure at 94 Hz and 151 Hz (see the vertical lines on figure 3)

Figure 5 – Mode shapes of the attachment modes associated to the the lower interface of the elastomer devices

Figure 6 – Mode shapes of the first four fixed-interface normal modes of the elastomer damping devices
(respectively at 96 Hz, 165 Hz, 231 Hz and 252 Hz)
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the real part of the complex stiffness matrix at a given frequency. The real part of the complex modulus is greater than
one thus adding stiffness to the system so a lower number of modes is present in the frequency range of interest. The
frequency limit chosen for the calculation of this second modal basis is 580 Hz, which again is roughly equal to the max
frequency of the frequency range.

As it can be seen on figure (3), the super-element matches the results of the reference model with a small error in
displacement, thus validating the modified Craig-Bampton proposed in this work. The different computational times from
both the FRF calculation of the reference model and the super-element are given in Table 3. The assembly of the super-
element is done once for all, before the FRF calculation, and the corresponding computational times is given under the
name of Pre CPU time in table 3. The sum of both the super-element assembly time and the FRF computational time
of the modified Craig-Bampton is more than 10 times lower than the computational time of the reference model, thus
validating the present super-element approach.

Table 3 – Computational time of both the reference and super-element models.
Reference model Super-element

Pre CPU time - 23 min
FRF CPU time 14 h 40 min 51 min
total CPU time 14 h 40 min 1 h 14 min

CONCLUSION

The aim of the presented method is to reduce the finite element model of a damper made of an elastomer core and
aluminium faces to a 12 dofs super-element. This super-element is built through the combination of a kinematical con-
straint to enforce rigid body motion at the damper interfaces and a Craig-Bampton approach to reduce and condense the
finite element dofs on the interfaces. A multi-model approach is used to keep the frequency dependence of the finite
element model during the Craig-Bampton reduction process. The result is a 12 dofs super-element that replace the full
finite element model. This super-element can be connected to any other finite element model through its interfaces nodes,
each of them having three translational dofs and three rotational dofs.

To test this method, the case of an aluminum structure supported on four dampers is studied. A reference model,
consisting in the structure and 4 non-reduced dampers, and a reduced model, made of the same structure with four super-
elements, are compared. Displacements of one structural point are computed for both the reference and reduced models.
The displacement responses are closed on the whole frequency range thus validating the proposed methodology. The
computational times of both models are also investigated and show that the reduced model is more than 10 times faster to
compute than the reference model. A library of super-elements corresponding to various damper geometries and materials
can be built off-line through this approach and then be used for design and optimization purposes in a full model.

REFERENCES

Bagley, R.L. and Torvik. P.J., 1983, “A theoretical basis for the application of fractional calculus to viscoelasticity”,
Journal of Rheology, Vol. 27, No. 3, pp. 201-210.

Craig, R.R., Bampton, M.C.C., 1968, “Coupling of substructures for dynamic analysis”, AIAA Journal, Vol. 6, No. 7,
pp. 1313-1319.
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