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Abstract: There are several SHM techniques proposed in the literature for crack detection in rotating machines. 

Among them, the ones based on vibration measurements are recognized as useful tools  in the industrial context. 

Although widely used, when applied under non-ideal conditions, such techniques can only detect cracks that 

eventually have already spread significantly along the cross section of the shaft (usually above 40% of its 

diameter). Therefore, currently, the researchers' attention is turning to more sophisticated methods ca pable of 

identifying incipient cracks (cracks that spread up to 25% of shaft diameter), which represent a type of damage 

that are hardly observable in classical vibration analysis. In a previous contribution, a crack identification 

methodology based on a nonlinear approach was proposed. The technique uses external applied diagnostic 

forces at certain frequencies attaining combinational resonances, together with a pseudo -random optimization 

code, known as Differential Evolution, in order to characterize the signatures of the crack in the spectral 

responses of flexible rotor. In the present paper, the favorable conditions to apply the proposed methodology are 

investigated. The analysis procedure is confined to the operating parameters of the system, being char acterized 

by the rotation speed of the rotor and the amplitude and frequency of the diagnostic forces. The harmonic balance 

approach is used to determine the vibration responses of the cracked rotor system and the open crack behavior 

is simulated according to the FLEX model. For illustration purposes, a rotor composed by a horizontal flexible 

shaft, two rigid discs, and two self-aligning ball bearings is used to compose a FE model of the system.  

Keywords: rotordynamics, crack detection and identification, FLEX model, harmonic balance approach. 

 

 
INTRODUCTION 

Shaft crack detection is an important issue in rotor dynamics and machines that are suspect of having a crack must be 

treated with the upmost concern (Bently and Hatch, 2002). The importance attributed to this problem is addressed to the 

serious consequences when cracks are not early identified in rotating systems. Thus, manufacturers have adopted design 

concepts, as well as special procedures for start-up, operation, monitoring, and maintenance, in order to minimize the 

appearance and growth of cracks in different rotors, such as steam turbines, centrifugal compressors, and generator units 

found in power plants. Various structural health monitoring (SHM) techniques devoted to crack detection in rotating 

machines have been proposed in the last decade. Therefore, the methodologies that use harmonic excitations as diagnostic 

forces has attracted the attention of several researchers and two interesting results are here recalled.  

Mani, Quinn, and Kasarda (2006) presented a theoretical analysis considering a simple rotor model with 2 degrees of 

freedom containing a breathing crack. The method of multiple scales was used to solve the equations of motion of the 

system, in which the stiffness of the shaft was affected by the nonlinearity (i.e., the breathing crack). The so-called 

combination vibrations were defined in the context of rotating cracked shafts. It was shown that the vibration amplitudes 

associated with the combination vibrations are directly proportional to the time dependent stiffness; in other words, to the 

crack depth. Ishida and Inoue (2006) made accurate numerical and analytical analyzes on a cracked Jeffcott rotor. The 

stiffness of the cracked shaft has been modeled by using two different approaches, namely, i) a piecewise linear stiffness, 

and ii) by using power series. The effects of the excitation intensity (diagnostic forces) on the forward and backward whirl 

vibration responses of the rotor system at the combination frequencies were evaluated according to the crack severity. An 

experimental validation of the proposed method was presented, in which the combination vibrations were demonstrated 

on the vibration responses of the considered rotating machine. 

More recently, Cavalini Jr et al. (2016) have analyzed the possibility of identifying the severity of transverse cracks 

(i.e., position and depth) in rotating shafts by using the so-called diagnostic forces and the combination vibrations. The 

frequencies of the diagnostic forces were determined by using the method of multiple scales. This model based approach 

(i.e., considering the finite element model of the system – FE model) was applied in a rotor test rig composed by a 

horizontal shaft, two rigid discs, two self-alignment ball bearings, and one electromagnetic actuator used to apply the 

harmonic excitations. The horizontal vibration responses of the rotating machine were measured by using displacement 
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sensors located near to the discs. The dynamic behavior of the system was investigated considering the breathing and 

open crack models. The crack models were formulated from the Mayes model (breathing crack) allied to the linear fracture 

mechanics approach (breathing and open cracks). Vibration responses in the time domain have been determined for 

different crack positions and depths. In a given test case, the proposed methodology was able to identify, with good 

accuracy, the severity of the crack by using the Differential Evolution optimization method (Storn and Price, 1995). In 

that contribution constant rotation speed and various diagnostic excitations at frequencies suitable for exciting two 

combination vibrations were considered.  

The purpose of applying the diagnostic forces in a cracked shaft at frequencies Ωd different from the rotation speed Ω 

is to exciting combination vibrations. The natural frequency (Ωn; i.e., forward and backward natural frequencies of the 

shaft operating at Ω) and rotation speed of the rotor are used to determine the conditions in which the combination 

vibrations appear, which results in the frequencies of the diagnostic forces (i.e., Ωd = 2Ω - Ωn, Ωd = -2Ω + Ωn, Ωd = 4Ω - 

Ωn, Ωd = -4Ω + Ωn, etc - in the case of open crack). Significant vibration amplitudes can be observed at these frequencies, 

allowing to distinguish the resonance peak from other vibration components and noise. The natural frequencies of the 

shaft must be known, so that the frequencies of the diagnostic forces can be selected in advance. However, the problem 

consists in determining the amplitude and frequency of the diagnostic forces to generate measurable peaks on the vibration 

spectrum at the combination vibrations. This is an important issue, mainly when the proposed technique is applied in 

industrial machinery due to the limitations regarding the applicable force amplitude and position.  

Therefore, the vibration response of the system at the combination vibrations depends on the damping, the location of 

the crack in the shaft, the locations where the diagnostic forces are applied, and the amplitude of the diagnostic forces. In 

this paper, the dynamic behavior of a cracked rotating shaft is analyzed to determine the most favorable conditions to 

apply the mentioned SHM technique by using the harmonic balance approach. This quasi-linear methodology is able to 

determine the vibration amplitudes at the combination vibrations generated by the presence of the crack when the external 

diagnostic forces are applied in the rotor system. Additionally, the obtained results are compared to the ones determined 

from the trapezoidal rule integration scheme, which was coupled with the Newton-Raphson iterative method for nonlinear 

analysis (Cavalini Jr et al., 2015).  

It is worth mentioning that cracks may be always open or they can breathe depending on the rotating machine and 

operating conditions. Shafts affected by open cracks behave according to linear systems with parametric excitation. 

Differently, shafts with breathing cracks becomes really non-linear when dominated by vibrations. It may occur in vertical 

shafts or in horizontal light and weakly damped shafts. However, shafts with breathing cracks may also be considered 

linear systems when the dynamic behavior is weight dominated, as occurs in horizontal rotating heavy shafts. In this 

contribution, the study is restricted to linear systems with parametric excitation. Thus, the so-called FLEX model for open 

cracks is used (Bachschmid, Pennacchi, and Tanzi, 2010). 

ROTOR TEST RIG 

Figure 1a shows the rotor test rig used to represent the analyzed rotor system, leading to the numerical simulations 

shown in this work. Thus, a model with 33 finite elements (Timoshenko’s beam elements with 4 degrees of freedom per 

node; Fig. 1b) was used to mathematically characterize the system. It is composed of a flexible steel shaft with 860 mm 

length and 17 mm diameter (E = 205 GPa, ρ = 7850 kg/m3, υ = 0.29), two rigid discs D1 (node #13; 2.637 kg; according 

to the FE model) and D2 (node #23; 2.649 kg), both of steel and with 150 mm diameter and 20 mm thickness (ρ = 7850 

kg/m3), and two roller bearings (B1 and B2, located at nodes #4 and #31, respectively). Displacement sensors are 

orthogonally mounted at nodes #8 (S8X and S8Z) and #28 (S28X and S28Z) to measure the shaft vibration. The system is 

driven by an electric DC motor.  

 

  
(a)  (b) 

 
Figure 1 – Rotor test rig used in the numerical simulations of the SHM technique: a) Test rig; b) FE model. 

 

Equation (1) governs the dynamic behavior of the cracked flexible rotor supported by roller bearings (Lalanne and 

Ferraris, 1998). 
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where M is the mass matrix, D is the damping matrix, Dg is the gyroscopic matrix, and K(Ωt) is the periodic stiffness 

matrix with variable values due to the crack (i.e., Ωt is the angular position of the shaft). W stands for the weight of the 

rotating parts, Fu represents the rotating unbalance forces, and Fdiag represents the diagnostic force applied in the rotor 

(force fixed in space), and q is the generalized displacement vector. 

A model updating procedure was used in order to obtain a representative FE model, considering the rotor system in a 

pristine condition (Fig. 1). In this sense, a heuristic optimization technique (Differential Evolution) was used to determine 

the unknown parameters of the model, namely the stiffness and damping coefficients of the bearings, the proportional 

damping added to D (coefficients γ and β; Dp = γ M + β K), and the angular stiffness kROT due to the coupling between 

the electric motor and the shaft (added around the orthogonal directions X and Z of the node #1).  

The proposed identification process (i.e., the comparison between simulated and experimental frequency response 

functions, FRF) was performed 10 times, considering 100 individuals in the initial population of the optimizer. However, 

in this case only the regions close to the peaks associated with the natural frequencies were taken into account. Table 1 

summarizes the parameters determined at the end of the minimization process associated with the smaller fitness value 

(i.e. objective function value). Figure 2 presents the Campbell diagram of the rotating machine, in which the first two 

forward critical speeds were determined at, approximately, 1714 rev/min and 5912 rev/min. More details about the model 

updating procedure adopted in this work can be found in Cavalini Jr et al. (2016).   

 
Table 1 – Parameters determined by the model updating procedure. 

 

Parameters Values Parameters Values Parameters Values 

kX / B1 8.551 x 105 kX / B2 5.202 x 107 γ 2.730 

kZ / B1 1.198 x 106 kZ / B2 7.023 x 108 β 4.85 x 10-6 

dX / B1 7.452 dX / B2 25.587 kROT 770.442 

dZ / B1 33.679 dZ / B2 91.033   

                     *k: stiffness [N/m]; d: damping [Ns/m]. 

 

 
 

Figure 2 – Campbell diagram of the rotating machine. 

OPEN CRACK MODEL 

Three models are the most currently used to represent the breathing behavior. The models proposed by R. Gasch 

(Gash, 1976) and I.W. Mayes and W.G.R. Davies (Mayes and Davies, 1984) are weight dominated. In both, the 

mechanism for opening and closing the crack is described by simple mathematical functions. The Gasch’s model 

considers the crack as opening and closing abruptly, while the Mayes’ model allows a smooth transition between the fully 

opened and fully closed crack. Finally, there is the more sophisticate model, known as FLEX model, as proposed by 

Bachschmid, Pennacchi, and Tanzi (2010).  

The FLEX model was originally formulated for breathing cracks, in which the dynamic phenomena is characterized 

by the stress distribution on the crack cross-section (σFLEX; see Eq. (2)). For a given angular position Ωt of the shaft, the 

locations of the crack cross-section presenting tensile stresses are considered open. Differently, compressive stresses 

represent crack closed regions.  

 

2 2
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                                                                                                (2) 

 

where IXX, IZZ, and IXZ, are the area inertia moments related to the geometric center (GC) of the shaft cross-section with 

crack. Xcr and Zcr are the distances obtained along the same cross section along the directions X and Z, respectively, from 

GC to the position where tension is calculated. MX and MZ are the dynamic moments around the X and Z directions, 
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respectively. These moments are given by the strength of materials theory and dependent of the external loads applied to 

the shaft.  

The FLEX model results in a symmetrical 8 x 8 stiffness matrix named KFLEX (see Eq. (3)), which is included in the 

FE model presented by Fig. 1b and Eq. (1) to evaluate the dynamic behavior of the cracked rotor system. 
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in which, 
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with G being the shear modulus, S is the cross-section area of the shaft, and LFLEX is the length of the element as a function 

of the crack depth (Bachschmid, Pennacchi, and Tanzi, 2010). 

For the breathing crack model, the stiffness matrix KFLEX is updated according to the applied external loads for each 

angular position of the shaft. The iterative process is based on the identification of the remaining cracked area cross 

section, which is given by the stress distribution σFLEX determined by Eq. (2). Thus, the area moments of inertia presented 

in Eq. (4) are determined allowing the stiffness matrix calculation of the cracked element. In the open crack model, the 

stiffness matrix KFLEX is only dependent of the angular position Ωt and the area moments of inertia can be written as 

follows: 
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where Ixx and Izz are the area moments of inertia of the shaft cross-section with crack about rotating x- and z-axes as 

defined by AL-Shudeifat (2013). 

As mentioned, the open crack behavior is a function of the shaft angular position Ωt only. Therefore, the periodic 

stiffness matrix of the shaft K(Ωt) (see Eq. (1)) can be written according to Eq. (6). 

 

 
3

*

1

1
( ) e e

2

i j t i j t

m j j

j

tK K K K
  



                                                                                                                                                               (6) 

 

where Km is the mean stiffness matrix of the shaft with the crack and ΔKj (j = 1, 2, and 3) are the stiffness variation related 

to the 1X, 2X, and 3X vibration components of the rotor speed. ΔK*
j is the complex conjugate of ΔKj. The Fourier 

expansion of the periodic stiffness is truncated at the third harmonic component. Figure 3 shows the behavior of the 

stiffness terms described in Eq. (6) considering a 50% depth open crack located at the element #18 of the FE model (see 

Fig. 1b). Note that the open crack behavior is represented only by the mean stiffness matrix and the component ΔK2, 

which is in accordance with the area inertia moments of Eq. (5).  
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(a) (b) 

 
Figure 3 – Stiffness behavior in fixed coordinates (── K(Ωt); - - - Km; -- -- ΔK1; -- - -- ΔK2; -- -- ΔK3):                                           

a) stiffness coefficient bF; b) stiffness coefficient aF (see Eq. (3)). 

HARMONIC BALANCE APPROCH 

As a result of the described open crack model, the equation of motion that governs the dynamic behavior of the flexible 

rotor can be rewritten as follows: 
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in which, the vector of degrees of freedom q can be expressed as a Fourier series, as shows Eq. (8). 
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where qst is the static displacement, qj (j = d and 1) are the dynamic displacements related to the diagnostic force and 1X 

vibration components of the rotor speed due to the unbalance (q*
j is the complex conjugate of qj). 

Equation 8 is included in Eq. (7), resulting in new vibration components (i.e., from the last RHS term in Eq. (7)). 

Therefore, the vector of degrees of freedom must be updated as follows:  
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where the two last terms of Eq. (9) are the so-called combination vibrations. The resonant condition is induced in the 

cracked rotating shaft when one of the combination frequencies equals one of the critical speeds (i.e., Ωc = 2Ω + Ωd and 

Ωc = 2Ω - Ωd). The substitution process continues including Eq. (9) in Eq. (7). Different vibration components and 

combination vibrations are determined. 

Equation 10 presents the amplitudes of the equivalent forces Fj associated with the vibration components 0, Ωd, Ω, 

2Ω, 3Ω, and 4Ω, and the combination vibrations 2Ω + Ωd, 2Ω - Ωd, 4Ω + Ωd, 4Ω - Ωd, 6Ω + Ωd, and 6Ω - Ωd (j = st, Ωd, 

1, 2, …, 6Ω + Ωd, and 6Ω - Ωd). The forces were obtained from subsequent substitutions of the vector of degrees of 

freedom in the last RHS term of Eq. (7). Note that the forces at Ω and 3Ω (F1 and F3, respectively) are obtained from q1, 

q3, q*
1, and q5; i.e., odd vibration components. Differently, Fst, F2, and F4 are proportional to even vibration components 

and qst. Additionally, the equivalent forces at the combinations resonances depend on the frequency of the diagnostic 

force Ωd and the even vibration components 2Ω, 4Ω, 6Ω, and 8Ω. Similar behavior is observed considering the amplitudes 

at -Ωd, -Ω, -2Ω, -3Ω, -4Ω, -(2Ω + Ωd), -(2Ω - Ωd), -(4Ω + Ωd), -(4Ω - Ωd), -(6Ω + Ωd), and -(6Ω - Ωd). Therefore, the odd 

vibration components, as well as the unbalance excitation (Fu in Eq. (7)), can be disregarded in the analysis of combination 

vibrations induced in rotating shafts affected by open cracks. Figure 4 presents the vibration responses of the cracked 

rotating shaft (see Fig. 1b; 50% depth crack located at the element #18) determined by using the trapezoidal rule 

integration scheme. In this case, two unbalance forces are applied separately to the disc D1. The diagnostic force was 

applied along the X direction at the node #4 of the FE model (Ωd = 2Ω - Ωn = 40 – 28.5 = 11.5 Hz; amplitude of 25 N). 

Note that only the vibration amplitudes at Ω and 3Ω changed according to the unbalance levels, as previously announced.  

The equation of motion (see Eq. (7)) can be rewritten in a matrix form, according to the considered vibration 

components and combination vibrations. Equation 11 presents the problem formulated to determine the vibration 

responses of the cracked rotating shaft, in which Hj (j = d, 2Ω, 4Ω, 6Ω, …, 2Ω + Ωd, 2Ω - Ωd, 4Ω + Ωd, 4Ω - Ωd, etc.) is 

given by Eq. (12) (H*
j is the complex conjugate of Hj). 
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Figure 4 – Vibration responses of the rotating shaft operating at 1200 rev/min                                                                           

( O 100 g.mm / 0o;  ── 300 g.mm / 0o): a) S28X; b) S28Z. 
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The diagnostic force Fd is also expressed as a Fourier series. Thus, 
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where F1d is the amplitude of the diagnostic force. 

NUMERICAL RESULTS 

Figure 5 compares the vibration responses of the rotating machine (measuring plane S28) determined by using the 

harmonic balance approach and the trapezoidal rule integration scheme. This analysis was performed for the rotor under 

two different structural conditions. The first one comprises the shaft with a crack located at the element #18 with 25% 

depth. The second test was performed for the shaft with a crack located at the same element with 50% depth. The 

operational rotation speed of the rotor Ω was fixed to 1200 rev/min and the unbalance forces were disregarded in these 

results. The diagnostic force was applied along the X direction in the node #4 of the FE model (Ωd = 2Ω - Ωn = (40 – 

28.5) Hz = 11.5 Hz = 690 rev/min, and amplitude of 25 N). Note that the obtained vibration responses are very close, thus 

validating the formulation based on the harmonic balance approach. The responses determined along the plane S8 are 

similar to the previous ones. It is worth mentioning that vector of degrees of freedom used in this work encompasses the 

following vibration components: qst, qΩd, q2Ω, q4Ω, …, q10Ω, q2Ω+Ωd, q2Ω-Ωd, q4Ω+Ωd, q4Ω-Ωd, …, q10Ω+Ωd, q10Ω-Ωd (see Eq. 

(11)). 
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Figure 5 – Vibration responses of the cracked rotating shaft ( ── time integration; O harmonic balance): 
a) 25% crack depth / S28X; b) 25% crack depth / S28Z; c) 50% crack depth /S28x; d) 50% crack depth / S28Z.  

 

Figures 4 and 5 show that the amplitudes at the combination vibrations are too small (< 1.0 μm), affecting the 

applicability of the considered dynamic phenomenon in crack detection or identification techniques (Sawicki, Storozhev, 

and Lekki, 2011; Cavalini Jr et al., 2016). As mentioned, the problem consists in determining the amplitude and frequency 

of the diagnostic forces to generate measurable peaks along the vibration spectrum at the combination vibrations.  

Figure 6 presents the vibration responses of the rotor obtained by the sensor S28Z at the frequencies 2Ω + Ωd, 2Ω - Ωd, 

4Ω + Ωd, 4Ω - Ωd, 6Ω + Ωd, and 6Ω - Ωd, varying Ωd from 0 to 85 Hz in steps of 0.1 Hz. The diagnostic forces were 

applied along the X direction in the node #4 of the FE model with 25 N, 50 N, and 100 N of amplitude, separately. These 

tests were performed for the shaft with a crack located at the element #18 with 50% depth. The operational rotation speed 

of the rotor Ω was fixed to 1200 rev/min. No unbalance forces are being considered. Note that measurable peaks (> 1.0 

μm) are obtained only at the combinations 2Ω + Ωd and 2Ω - Ωd (Fig. 6a and Fig. 6b, respectively). Small vibration 

amplitudes were obtained for the higher combination frequencies (i.e., 8Ω + Ωd, 8Ω - Ωd, 10Ω + Ωd, 10Ω - Ωd, etc.). 

Similar results were observed for the remaining sensors.  
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Figure 6 – Vibration responses obtained by the sensor S28Z at the combination vibrations according to Ωd         

(── F1d = 25 N; - - - F1d = 50 N; -- - -- F1d = 100 N): a) 2Ω+Ωd; b) 2Ω - Ωd; c) 4Ω+Ωd; d) 4Ω - Ωd; e) 6Ω+Ωd; f) 6Ω - Ωd. 
 

Figure 6a shows highest vibration amplitudes at 27.5 Hz and 57.6 Hz. In Fig. 6b, significant vibration responses are 

observed at 13.0 Hz, 27.0 Hz, and 67.5 Hz. It is worth mentioning that the first five natural frequencies of the cracked 

rotor operating at 1200 rev/min are given by (frequencies in Hz): 26.46 ≤ Ω1n ≤ 26.71, 27.85 ≤ Ω2n ≤ 28.14, 91.03 ≤ Ω3n 

≤ 91.34, 97.43 ≤ Ω4n ≤ 97.62, and 123.76 ≤ Ω5n ≤ 123.84 (variation according to the angular position of the shaft). A 

resonance condition is obtained for Ωd = 27.5 Hz (frequency close to Ω1n and Ω2n), as well as for Ωd = 27.0 Hz. Differently, 

combination vibrations are observed at Ωd = 57.6 Hz ~ 2Ω + Ω2n, Ωd = 13.0 Hz ~ 2Ω - Ω1n, and Ωd = 67.5 Hz ~ 2Ω + Ω2n. 

Figure 7 presents the vibration responses of the rotor obtained by the sensor S28X. The highest vibration amplitudes are 

obtained at 27.5 Hz, 51.2 Hz, 83.7 Hz (see Fig. 7a), 13.0 Hz, 27.0 Hz, and 67.6 Hz (see Fig. 7b). Note that along the X 

direction, new combination vibrations are observed at Ωd = 51.2 Hz ~ Ω3n - 2Ω and Ωd = 83.7 Hz ~ Ω5n - 4Ω. 

CONCLUSIONS 

The presented results validate a promising methodology of fault detection, based on the application of a diagnostic 

force to detect cracks in rotating machines, coupled with a quasi-linear harmonic balancing methodology. This approach 

exhibits considerable computational time saving as compared with a pure integration in time; besides, it promotes better 

understanding about the components of the forces acting on the rotating system. Considering the case of a shaft with an 
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Figure 7 – Vibration responses obtained by the sensor S28X at the combination vibrations according to Ωd         

(── F1d = 25 N; - - - F1d = 50 N; -- - -- F1d = 100 N): a) 2Ω+Ωd; b) 2Ω - Ωd. 
 

open crack, it was demonstrated that the observed effect on the combination vibrations is just due to the even vibration 

components. Consequently, in the present case, the odd vibration components, as well as the unbalance influence have 

been neglected in the analysis. When it was produced a sweep of the diagnostic force frequency, it was observed the 

combinations 2Ω + Ωd and 2Ω - Ωd produced the highest measurable peaks exciting the critical speeds below 85 Hz. 

Finally, the evaluation of the diagnostic force level showed important contribution on the combination vibration emerging. 

Although, when applied to structure under operating conditions, the amplitude of the diagnostic forces must be regulated 

to keep the system functioning safely on an acceptable vibration level. The potential of the conveyed techniques will be 

explored in future research work using combination vibrations.  
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