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Abstract: It is well-known that the flutter boundary prediction through mathematical models for complex aeroelastic 

panels of industrial interest is not a simple task. In most cases, this is mainly due to the complexity of the resulting 

aeroelastic models usually composed by a large number of degrees of freedom. Moreover, if the aeroelastic model 

incorporates a control strategy to suppress the flutter phenomenon, such as the use of viscoelastic materials, the 

computational cost inflicted to predict the flutter speed of this new aeroviscoelastic model may become impractical. 

For this situation, in which the flutter boundary must be determined through the solution of a complex eigenvalue 

problem, the use of a model reduction technique is required. However, when modeling reduction methods based on 

modal projections for aeroviscoelastic systems with frequency- and temperature-dependency, the construction of the 

reduction basis becomes a challenge. It is so due to the need of considering simultaneously in the reduction basis the 

frequency- and temperature-dependency of the viscoelastic properties and the dynamic behavior of the system as a 

function of the dynamic pressure. Thus, the main contribution of the present paper is to propose a new reduction 

method strategy for aeroelastic systems incorporating viscoelastic materials based on an iterative enriched Ritz-

method with aerodynamic residues iterations. The numerical results for a thin rectangular three-layer sandwich 

plate under supersonic flow, are presented comparing the exact solution with predictions obtained using the 

proposed reduction method. The comparisons are presented in terms of the amplitudes of the FRFs, the flutter 

boundary and the computational efficiency of the proposed new reduction method and through most used methods 

suggested in the open literature. 
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INTRODUCTION 

Flutter of aeronautical panels is a complex phenomenon that can occur during supersonic flights due to the 

simultaneous interaction of three forces: elastic, inertial and aerodynamic. Thus, it can significantly affect the fatigue 

life of existing aeronautical components in flight conditions, leading to catastrophic failure. In the last decades, several 

works have been proposed as a first attempt to better understand the behavior of composite materials under flutter 

conditions. Secondly and more recently the application of control strategies to mitigate the undesirable vibrations 

induced by such phenomenon. In the present paper, a passive control strategy named the constraining viscoelastic layer 

is investigated. It consists of incorporating a viscoelastic layer sandwiched between a restrained layer and the base-plate 

forming a moderately thin three-layer sandwich plate. However, viscoelastic material properties are frequency- and 

temperature-dependent, causing the computation of the flutter boundary to be very costly, sometimes unfeasible. Thus, 

the proposition of an efficient reduction method to be applied on aeroviscoelastic systems becomes essential. 

The constitutive model for the viscoelastic material is based on the complex moduli approach following the original 

developments made by Drake & Soovere (1984). Thus, the eigenvalue problem obtained from the equations of motion 

is highly nonlinear due to the simultaneous dependence of temperature and excitation frequency of the viscoelastic 

material properties. An alternative to deal with such a problem is to linearize it by fixing a value of temperature 

followed by an iterative process that adjusts the mechanical properties of the viscoelastic material with the excitation 

frequency. Moreover, with the aim of assessing the stability of the aeroviscoelastic system, the three-layer sandwich 

panel is submitted to a longitudinal supersonic airflow modeled through the Linear Piston Theory, firstly propose by 

Lighthill (1953). This kind of formulation involves a certain number of iterations to calculate the properties of the 

system for each value of the airflow speed, for more detailed information about the iterative process see the work of 

Cunha-Filho et al. (2016). Therefore, a dynamic response evolution of the sandwich plate with respect to the airspeed 

must be considered in the reduction method. 

Among several possibilities available in the open literature, a modal projection basis which is a subspace formed by 

pseudo-normal modes (nominal projection basis) obtained from the exact solution and enriched by static and dynamic 

residues of first order is typically used to reduce large finite element (FE) models (Balmès, 1996). It is convenient to use 

such approach in the present work, since the reduced model contains information about the natural modes of vibration 

(free, fixed, or loaded boundary conditions) and static responses to a unit load (Balmès, 1997). Clearly, in the context of 
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aeroelastic systems, it means that the load generated by the longitudinal supersonic flow will induce as many static 

residues as the number of velocities evaluated. It means that a modified iterative projection basis must be constructed.  

Accuracy and efficiency of the proposed aeroviscoelastic reduction method are compared along with two other 

already known methodologies. The first one is a method developed by de Lima et al. (2010) named Robust Enriched 

Ritz approach. It is intended to reduce a discrete viscoelastic model through a constant projection basis constructed 

from residues formed by static displacements associated to external loads and viscoelastic damping forces. Although 

this method presents an impressive efficiency and accuracy for viscoelastic models, it is not accurate for 

aeroviscoelastic systems since the projection basis is not updated considering the aeroelastic modifications. The second 

method is the so-called multi-model approach (MM), initially proposed by Balmès and Plouin (2000). This approach 

consists in generating a projection basis from pseudo-normal modes obtained from a viscoelastic system. The MM 

method considers the static response to a prescribed load generated by the imaginary part of the stiffness when exciting 

a given pseudo-normal mode. The method leads to a good correlation for viscoelastic and aeroviscoelastic systems, but 

the construction process of the projection basis inflicts high computational costs and may turn out to be prohibitive, 

depending on the number of dofs to be considered. Finally, an iterative method, firstly proposed by Kergourlay, Balmès 

and Clouteau (1998) and here modified to attain the chalenge of reducing a aeroviscoeltic system is proposed. This 

approach has proven to be not only accurate enough to represent the system reliability but also presented feasible time 

when constructing the projection basis.  

Finally, one emphasizes that few works have proposed reduction methods capable of dealing with aeroviscoelastic 

systems, motivating the study addressed herein. Shin et al. (2006) studied the aeroelastic characteristics of cylindrical 

hybrid composite panels viscoelastically damped using the mechanical properties of the 3M-ISD110 and 3M-ISD112 

viscoelastic materials modeled according to the analytic equations of Drake & Soovere (1984). The authors have 

proposed a reduction method based on a modal approach that consists in generating a simple projection basis formed by 

a subspace obtained from the equation of motion regardless not only the structural viscoelastic damping but also the 

aeroelastic effects. This methodology is also compared to the exact model and the results are less satisfactory then the 

other methods cited above. 

BACKGROUND ON AEROVISCOELASTIC MODELING PROCEDURE 

This section briefly presents the finite element modeling of a three-layer sandwich panel subjected to a longitudinal 

supersonic airflow. Further details can be found at Cunha-Filho (2015). One uses a rectangular element containing four 

nodes and seven DOFs per node, as depicted in Fig. 1. The whole structure is formed by a base plate (1), a viscoelastic 

core (2) and a constraining layer (3). This set of layers is responsible to introduce shearing stress into the viscoelastic 

material inducing energy dissipation through hysteretic mechanisms. In-plane displacements in the midplane of the 

base-plate in directions x and y are denoted by u1 and v1, respectively, and in-plane displacements of the midplane of the 

constraining layer in directions x and y are denoted by u3 and v3. Transverse displacement is denoted by w, which is 

common for all three layers and the cross-section rotations about x and y, are denoted by θx and θy, respectively. 

 

 
Figure 1 - Illustration of the three-layer sandwich plate element under supersonic airflow 

Hypothesis of thin plates made by Kirchhoff are adopted herein for the elastic base-plate and constraining layers. 

For the viscoelastic core, the Mindlin’s theory is considered to account for the transverse shear. Thus, through these 

assumptions, it is possible to obtain the following equations of motion in the frequency domain: 

 

  2,e vG T    
 
K K M Q L    (1) 

 

where N NR M is the global mass matrix (symmetric, positive-definite), N N
e R K  is the stiffness matrix 

(symmetric, nonnegative-definite) corresponding to the purely elastic substructure, N N
v R K  is relative to the 

viscoelastic substructure, L  is a column vector of the amplitude of the external aerodynamic load and Q  is the vector 

of the responses. The term  G ,T  corresponds to the complex modulus function of the viscoelastic material and it 

contains information about its frequency- and temperature-dependent dynamic behavior. The complex modulus function 



A.G. Cunha-Filho, Y.P.J. Briend, A.M.G. de Lima, M.V. Donadon 

 

is expressed by the equations developed by Drake & Soovere (1984) and applied to the ISD112 viscoelastic material. 
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where r T    is the reduced frequency and T  is the shift factor, which is determined as follows: 
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The aeroelasticity can be introduced into the FE model through the so-named Piston Theory based on the original 

developments made by Lighthill (1953). The simplest form of the Piston Theory is called Quasi-Steady Model of 

Ackeret (Almeida et al. 2012), which is a linear approximation of the aerodynamic loading regardless the aerodynamic 

damping. This later can be neglected since it has a small influence over the prediction of the critical dynamic pressure 

(Bismarck-Nasr, 1999; Dowell, 1975; Pegado, 2003; Kuo, 2011). According to this theory, the variation of pressure for 

a panel can be expressed as follows:  
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The energy involved in the interaction between the supersonic airflow and the plate can be described through the 

work done by the aerodynamic load as: 
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where the vector   represents the DOFs of the sandwich plate, NxNRA  designates the aerodynamic stiffness matrix, 

20.5 airq V  is the dynamic pressure over the plate generated by the supersonic airflow, and 2 1M    . The 

parameter air is the air density at a specific altitude and V is the speed of the airflow. Thus, the aerodynamic stiffness 

matrix, A , can be introduced into the equations of motion (1): 
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where   NR F  and  , CT R y are, respectively, the vectors corresponding to the applied loading and complex 

responses. The vectors
NxfRb and 

cxNRc are Boolean matrices used to select, among the DOFs, those which the 

responses are computed and the excitation forces are applied, respectively. 

Equation (6) can be interpreted as if the viscoelastic system had inherent aeroelastic properties and a constant 

projection basis containing such information should be enough to approximate the solution through a linear 

transformation of the form RN N
T , where RN N is the number of reduced vectors that forms the base. However, if 

the dynamic pressure increases, it also changes the aeroelastic properties of the system, modifying the modal shapes of 

the panel under supersonic flow condition. Such information is not considered in a constant projection basis T . This 

fact suggests that an iterative reduction method, such as the strategy proposed by Kergourlay et al. (1998), could be 

used to consider the mode shape evolution into the projection basis.  

Next, one shows a brief description of the standard procedure used to obtain a nominal projection basis and how 

such basis can be improved according to each reduction method implemented here.  

REVIEW OF SOME MODEL REDUCTION TECHNIQUES 

Clearly, it is expected that the temperature- and frequency dependent behavior of viscoelastic materials imposes 

some difficulty when dealing with model reduction techniques applied to aeroviscoelastic systems. By performing a 

modal analysis with the aim to define the exact properties of the viscoelastic material in consonance with the excitation 
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frequency it is convenient to implement an iterative process to ensure that the eigenvalues and the global FE matrices 

converge toward a unique value. More detailed information about this procedure is available at the reference (Cunha-

Filho et al., 2016). Thus, the application of model reduction methods in the iterative process to obtain the flutter 

boundary can make the computation of flutter speed faster, since it avoids the use of the exact FE model. However, it 

will be shown that different reduction techniques lead to different results and some of them are not accurate enough to 

deal with aeroviscoelastic systems, requiring improvements to fulfill expectations. Starting from the reduction methods 

used to deal with viscoelastically damped structures as discussed in the introduction section, it will be shown firstly 

their advantages and disadvantages, before introducing the new model reduction technique proposed herein. 

Typical reduction methods applied to viscoelastic systems 

Condensation methods are used to reduce the model dimension and to accelerate the computation burden while 

keeping a reasonable predictive result capacity. Such an impressive achievement is possible under the assumption that 

an exact solution, taken as an example Eq. (6), which can be approximated by projections on a reduced vector basis as: 

 

   ˆ, ,T T Q TQ    (7) 

 

where RN NC T is a linear transformation matrix spanned by a vector basis obtained arbitrarily from the exact 

coordinates  ,TQ , the term  ˆ , RNT C Q is the generalized coordinates. 

Basically, all the approaches addressed here have the same initial idea in which the construction of the projection 

basis T is performed on the conservative associated viscoelastic system without any aerodynamic contribution. This 

initial subspace is called nominal basis,0 , which is determined by performing the following eigenvalue problem: 
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If the nominal base, 0 , is taken as the reduction basis, it could be stated that a first reduction method is defined. 

Next, a reduced system can be determined by performing the following transformation applied on the complete system 

(6): 
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In the open literature, Shin et al. (2006) used such procedure to reduce an aeroviscoelastic system formed by curved 

composite sandwich panels under supersonic flow. However, no comparison between the exact solutions and the 

predictions obtained by the reduced model were presented. In order to certificate the efficiency and precision of such 

approach, the resulting sysem (9) is compared to the exact solution (6). To do so, three different systems are evaluated 

through FRFs curves: the exact viscoelastic system, the exact aeroviscoelastic system and the reduced model through 

the nominal projection basis,0 , for an airspeed value of 1500m/s (right before the flutter condition).  

The idea is to notice not only the influence of the aeroelastic properties over the dynamic response of the sandwich 

panel, but also to show how important those information are for the construction of the projection basis. Figure 2 shows 

how inacurate reducing the system using only the nominal basis0 can be and the influence of the aerodynamic loading 

over the plate. Figure 2 (b) shows that aerodynamic informations must be inserted into the projection basis, othewise it 

becomes impossible to the reduced model predict the coalescense. Nevertheless, the nominal basis,0 , is an important 

step to be considered in the construction of the projection basis as it will be seen in the sequel.  
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Figure 2 – Comparison between the amplitudes of the FRFs for the exact and reduced systems by considering 

the projection basis 0  (left); V-g diagram for the solutions by considering the projection basis0  

 

Enriched Ritz Method (ERM) 

A considerable improvement of the projection basis, T , can be achieved by enriching it with static first order 

residual vectors associated to the viscoelastic damping forces, as implemented by de Lima et al. (2010): 

 
0 1

0 0v v
R K K     (10) 

 

where 0 0e vG K K K  and 0G is the property of the viscoelastic material for 0  .  

The residues obtained from Eq. (10) can be interpreted as columns of the flexibility matrix associated to the 

undamped system (Balmès and Germes, 2002). For this system, three types of forces are involved: the applied external 

excitations, the damping forces and the aerodynamic forces. The damping forces can be interpreted by examining the 

Eq.(8). By moving the term involving the viscoelastic properties to the right-hand side of the equation, it plays a role of 

additional forces applied on the associated conservative structure. The aeroelastic residue, generated by the 

aerodynamic loading is obtained by the following expression: 
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Thus, the enriched projection basis is determined as follows: 
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From Eq.(12), the following reduced aeroviscoelastic model can be written, 
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The Multi-Model Approach (MM) 

The Multi-model approach is based on the knowledge relative to the associated conservative system and dynamic 

responses obtained from the higher values of the frequency band of interest. It consists in considering the sub-spaces 

obtained from Eq.(6), but admitting responses from different values of frequencies:  min and  max , as developed by 

Balmès and Plouin (2000). Those subspaces can be determined according to a number of pseudo-normal modes as 

follow: 
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where, in the present study, 1,...,10k  .  

From Eq. (14), the projection basis of the MM approach, MMT , is obtained as: 

 

   min maxMM     T      (15) 
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In order to adapt the MM method to the aeroelastic case, instead of solving the eigenvalue problem only for the 

associated conservative viscoelastic system of Eq.(8), one solves it for the eigenvalue problem of the fully 

aeroviscoelastic system represented by Eq.(6), for both frequencies of interest determined in Eq.(14). This operation 

will introduce the required aeroelastic information into the reduction basis. Clearly, the factor, 2 q  , that multiplies 

the aerodynamic matrix, has a strong influence on the result in terms of the flutter point prediction. An optimal value 

would be the one in which the flutter point occurs itself, which is unknown by definition. However, one could add the 

aerodynamic residue of Eq.(11) into the Multi-model projection basis as shown in Eq.(16), which has proved to be more 

efficient. 
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min maxMM A   

 
T R      (16) 

 

Finally, the reduced model through the projection basis, MMT , assumes the following form: 
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Iterative Ritz Method (IRM) 

This approach is inspired by the technique proposed by Bobillot and Balmès (2002), whose purpose was to reduce 

FE models incorporating damping and coupled with compressible fluids. Clearly, the resulting systems contain complex 

stiffness matrices, whose eigenvalue computations play an important role in the quest of achieving a time efficient 

model. Because of the frequency-dependent behavior of the damped systems, the authors proposed a projection basis 

that contains information of the system for a certain number of natural frequencies associated to the conservative 

structure. Thus, by applying an efficient iterative process, the eigenvectors for non-zeros frequencies are introduced into 

the projection basis complying with a strain energy criterion. After the construction process, the new enriched basis 

remains constant and it does not need to be updated during the computation process, allowing an important reduction of 

time processing. 

Differently from the methods described previously, the construction of the IRM projection basis is based not only on 

the nominal basis, but also in the dynamic stiffness matrix,  ,TZ . The method proposed consists firstly in 

introducing the aerodynamic matrix defined in Eq.(5) into the dynamic stiffness matrix. Then, it is considered the 

aerodynamic evolution of the system by the insertion of several values of the aerodynamic factor, 2 q  , 

simultaneously to the frequency iterative process. The values of 2 q   are inferred from an interval of airspeed that 

may respect the aerodynamic theory  2 5.5M   and certainly contains the critical airspeed. It makes this method 

more general than the previous one. Such procedure allows updating the projection basis with respect to the 

modification of the aerodynamic loads.  

The construction of the projection basis IRMT can be performed, firstly defining the dynamic stiffness 
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q
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Z = M + K K A . Then, it is assumed that the exact dynamic response given by Eq. (18) 

can be approximated by projection basis formed by the nominal basis,  0 , leading to , ˆQ TQ , where Q̂ is the 

reduced vector of generalized DOF. After, assuming that the equilibrium equations are projected onto the basis  , the 

following reduced model is obtained:  
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The solution of Eq. (19) gives an approximation of the dynamic response of the system excited by  ,Tbu . Then 

one can compute the load and displacement residues according to the following equations: 
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where LR is the load residual and DR is the displacement residual. Once the displacement residual has been determined, 

one can compute the associated error using a criteria based on the strain energy: 
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If the error E is bigger than a defined tolerance, then the ultimate displacement residual DR is added to the previous 

basis  , and the process from Eq.(19) to (22) is repeated until the condition is satisfied. Once it is done, one can go to 

next iteration k+1, that is, to equation (18) with a new value of  and 2
q


corresponding to 1k   and 1

1

2 k

k

q






. Thus, 

one can understand that, for N iterations, the size of projection basis   can increase from more than N vectors, given 

that for one iteration, several displacement residuals can be added. Moreover, to avoid some possible vector 

collinearities, it is prudent to perform an orthogonalization of the projection basis at each loop, which generally reduces 

its order.  

NUMERICAL RESULTS 

The numerical results are presented in three parts: first, it is compared the quality of the FRFs obtained from each 

reduction method proposed hereby; next, the interest is to evaluate the capability of flutter prediction of the reduced 

models through a V-g diagram; finally, one shows the comparison between the dynamic characteristics of the results 

obtained by the projection bases and the corresponding computational efficiency.  

The physical system considered herein is formed by a three-layer rectangular sandwich panel subjected to 

supersonic airspeed, where the base plate and constraint layer are made of aluminum ( 70E Gpa , 

0.34  ,
32700 /kg m  ), while the viscoelastic core is made of ISD112 3M

®
 viscoelastic material 

( 0.49  ,
3950 /kg m  ). The length of the plate in the x and y directions are 0.39m and 0.33m, respectively. The 

characteristics of the air considered in the present study are 31.25air kg m  , 340soundV m s , and the reference 

temperature of 15°C.  

FRFs comparison 

In order to evaluate the quality of each method in predicting the dynamic response of the aeroviscoelastic system, 

firstly the FRFs have been investigated. The amplitudes of the FRFs are evaluated as they represent a valuable source of 

information to determine the frequency bands where reduction methods are efficient. For the proposed structure, the 

most important natural frequencies are the first and second modes, since they are the first ones to coalesce. Thus, the 

exact aeroviscoelastic model, the enriched Ritz Method (ERM), the Multi-Model Approach (MM) and the Iterative Ritz 

Method (IRM) are presented in Figure 3.  

 

 
Figure 3 – FRFs obtained for the exact and reduced models: ERM, MM and IRM. 

 

The arbitrary airspeed of study is defined as 1500 /v m s  (before flutter) in order to assess the difference between 
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the reduction methods that are influenced by the aerodynamic effect. Analysing the results shown in Figure 3 it is 

evident that the IRM presents the best correlation until 400 Hz for both resonance and anti-resonance regions. A zoom 

from 100 to 300 Hz, depicted in Fig. 5, enables to conclude that the IRM method overlaps the exact solution, whereas 

the MM and ERM methods are out of the exact one. 

Figure 4 shows that the best approximation is obtained by the IRM projection basis, while the MM and ERM 

diverge at the anti-resonance, not only for the frequency values but also for the amplitude values. Moreover, despite the 

ERM predicts correctly the value of the first natural frequency, the amplitude is largely underesstimated. Such good 

correlation of the IRM can be explained by the fact that the displacement residues are more accurate and reliable than 

the other reduction methods thanks to the iterative construction process conforming to the strain energy criterion.  

 

 
Figure 4 – A zoom from 100 to 300Hz to visualize the accuracy of each method 

Flutter prediction through V-g diagrams 

To evaluate the flutter boundaries of the exact and reduced models, the V-g diagram is under consideration, in 

Figure 5. More details about this methodology can be found in the references (Hodges and Pierce, 2002) and (Singha 

and Ganapathi, 2005). 

The V-g diagram is used to evaluate the mode frequencies of the plate along the increasing airflow speed over the 

plate. Flutter can be assessed by the analysis of the imaginary part of the eigenvalue, which is composed by the sum of 

the viscoelastic damping and the imaginary part generated by non-symmetric aerodynamic matrix. Flutter occurs when 

the imaginary part of one of the eigenvalues turns greater than zero. Frequencies are normalized according to the next 

formulation: 

 

2
eq

eq
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h E


     (23) 

where A is the length of the plate in the x direction, h is the total width of the plate, 31 2
1 2 3eq

hh h
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   the equivalent plate Young’s modulus. 

 
Figure 5 – V-g diagram comparing the exact solution and the ERM, MM and IRM reduced models 
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In Figure 5, one shows that the Enriched Ritz Method (ERM) presents the poorest result with a critical airspeed of 

1663 /cv m s , while the exact solution is at 2087 /cv m s  . It could be explained by the fact that the aerodynamic 

information in the projection basis comes from a constant matrix without any aerodynamic information. The MM 

approach is performed assuming an arbitrary value of the factor 2 q  . The result presents considerable improvement 

when compared to the ERM method, with 2055 /cv m s . The IRM method, also obtained a good 

approximation, 2033 /cv m s , using a general interval of factor 2 q  . As seen in the approximation of the FRF, the 

aerodynamic information inserted in the projection basis during the iterative process is crucial to refine the 

approximation. 

Projection basis characteristics  

Finally, the efficiency of each method is evaluated by the estimation of the time taken to perform the iterative 

process. Such process will depend directly on the size of each projection basis, which is determined by the mesh 

refinement and the reduction method. For the analysis, three mashes are evaluated: 6x6, 12x12 and 24x24 elements 

within an interval of airspeed varying from 380m s  to 2500m s stepped by 100m s , totalizing 21 iterations. The 

efficiency of each one is measured taking the IRM calculation time as reference, once it is the proposal of this work. All 

the conditions evaluated were performed in computer with the following hardware caracteristics: Intel Core i7-6700K 

CPU @ 4.00GHz 4,00 GHz, 16GB RAM, 64 Bits. The results are available in Table 1. 

 
Table 1 – Characteristics of each projection basis 

Mesh Size Method Basis Size Construction Time [s] Iterative Sol. [s] 

6x6 

Exact - - 84.8 

ERM 319x24 0.016 0.224 

MM 319x37 0.555 0.428 

IRM 319x53 0.3764 0.8192 

12x12 

Exact - - 5277 

ERM 1135x24 0.2000 0.5750 

MM 1135x37 53.8750 1.0970 

IRM 1135x57 4.7129 1.4480 

24x24 

Exact - - Prohibitive 

ERM 4279x24 6.8740 1.5000 

MM 4279x37 4476.407 6.3550 

IRM 4279x58 150.835 12.9925 

 
Among the three conditions evaluated, the IRM method has proven to be most efficient if pondering time and 

quality of the approximation. The IRM method allows to assess much larger systems containing a number of d.o.f that 

would be impossible to evaluate without a reduction approach. 

Although the MM approach has shown excelent results, the time taken to construct the projection basis drastically 

increases with the size of the system.  

CONCLUDING REMARKS 

For aeroviscoelastic problems represented by panels under aerodynamics loads modeled through the linearized 

Piston Theory, several reductions methods can be adapted in order to reduce computation time, keeping a relatively 

good prediction of flutter occurrence. It has been seen through FRF studies that simple methods only composed of 

conservative information are not good enough to represent the dynamic behavior of the system as the analyzed 

frequency band increases. The conservative basis can be enriched by residuals that allow the solution of reduced model 

to approximate to the exact one. However, depending on the construction process of these residuals, accuracy will not 

be the same. The ERM enables the prediction of the evolution of the first mode, but the prediction of the imaginary part 

of the eigenvalue is not accurate enough resulting in a flutter point accurence considerably different from the exact one. 

This problem can be related to the lack of dynamic information at higher airspeed values and consequently higher 

frequencies. 

 Improved methods like MM get around it by adding mode shapes at non-zeros frequencies and non-zeros airspeed 
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to the projection basis. This approach could be understood as a frequency and aerodynamic update. It has been shown 

that the accuracy of the MM is then better in terms of FRF as well as for flutter prediction, however a particular value of 

aerodynamic pressure has to be chosen, what makes this method not as general as the IRM.  

The IRM method  presented relatively good results, due to a more efficient iterative process of construction of the 

displacement residual, that enriches the projection basis for a large number of frequencies and airspeed values. This 

method was able to reduce time computation to 98% giving an excellent correlation to the exact model. 
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