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Resumo: This work describes a hybrid solution (analytical-numerical) for the heat transfer by forced convection in the 

entry section of a rectangular duct, considering the turbulent flow of dynamically developed and thermally developing 

Newtonian fluids. The energy equation is solved using the Classical Integral Transform Technique (CITT), while the 

associated eigenvalue problem is solved using the Generalized Integral Transform Technique (GITT). Different 

turbulence models with different formulations for velocity distribution and momentum eddy diffusivity are considered. 

The temperature field and the local Nusselt number are evaluated for various values of the Reynolds and Prandtl 

numbers. For each turbulence model considered, the thermal input length is determined. The results, presented in the 

form of tables and graphs, are compared with reference values in the specialized literature. 
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1. INTRODUCTION  

 

The study of turbulence is of great importance in engineering, given the large number of practical applications in 

which it is present. In heat transfer, the involvement of fluid in turbulent motion appears in most processes involving the 

transport of energy. Over the years, many theories and concepts have been formulated in an attempt to obtain a 

universalist description of the phenomenon of turbulence that is suitable for any problem of practical interest. However, 

due to the existence of irregular fluctuations, there is still neither a univocal form nor a fundamental theory for its 

treatment. While this general formulation is not achieved, simplified models have been proposed as a way to analyze 

specific problems in each area of interest. The methodology used consists of observing patterns of behavior in each 

situation analyzed. These patterns establish the so-called turbulence models, which are based on empirical or semi-

empirical relationships and make this study viable. In the case of the distribution of velocities in a turbulent flow, for 

example, Nikuradse(1950) was the initial investigator and presented careful measurements considering the flow along 

rough tubes; since then, several other researchers have devoted attention and made new attempts in order to develop 

empirical relationships that are appropriate, with the greatest possible precision, and that allow establishing a universal 

speed profile. 

The scope of the work is focused on the analysis of heat transfer in turbulent forced convection, which has received 

wide attention from the community due to the constant search for calculations of parameters of practical interest that 

allow to develop projects and build optimized thermal devices. However, the calculations of these parameters, such as 

friction factors and heat transfer coefficients, are totally dependent on the turbulence model adopted to describe the 

speed distribution and the momentum eddy diffusivity, and consequently different results are found for each situation 

considered, (Santos et al., 2001). 

The turbulent forced convection in the thermal entrance region of rectangular ducts has been extensively studied, 

considering several models of turbulence and several boundary conditions. In the works of (Sleicher et al., 1970; Notter 

and Sleicher, 1971; Notter and Sleicher, 1972; Shibani and Özisik, 1977; Özisik et al., 1989; Santos et al., 1995; Brown 

et al., 1997; Quaresma et al., 2001), it is possible to make a comprehensive review of the turbulent forced convection in 

thermal developing and hydrodynamically developed flow, object of study of the present work. 

The objective of this work is to analyze the thermal development in the turbulent flow of Newtonian fluids, 

considering different turbulence models. Four turbulence models are considered as references, based on the work of 
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(Prandtl, 1910 and Taylor, 1916; Von Karman, 1939; Rannie, 1956; Reichardt, 1951 and Spalding, 1961). The 

combination of the classical integral transform technique (CITT) and the generalized integral transform technique 

(GITT) is used to solve the equations of the proposed problem; CITT is applied to the main equation and GITT is 

applied to the associated eigenvalue problem. Analytical solutions for the thermal development of turbulent flow in 

ducts present difficulties associated with the calculation of eigenvalues and eigenfunctions of the related eigenvalue 

problem, as described by Santos et al., 2001, Özisik et al., 1989. These adversities are overcome using the renowned 

generalized integral transformation technique (GITT). The GITT is used to solve the Sturm-Liouville problem 

associated with the original problem, as described by Cotta, 1993. The application of GITT to Sturm-Liouville problems 

is capable of transforming the differential eigenvalue problem into an algebraic eigenvalue problem, which is easier to 

solve; in parallel to this, GITT is a technique that can manage irregular domains with some ease, overcoming the 

mathematical difficulties imposed by the turbulent models hydrodynamically developed in layers. 

This article is organized into five sections. In section 2, the mathematical modeling of the proposed physical 

problem is carried out. In Section 3, the application of CITT in the governing equation is discussed and the solution of 

the thermal field and parameters of practical interest is presented. In Section 4, the results obtained in the present work 

are shown and discussed. In Section 5, final considerations are made. 

 

2. MATHEMATICAL MODELING 

 

The following simplifying assumptions are considered in the problem analysis: 

• Steady forced convection in thermally developing, hydrodynamically developed flow; 

• Viscous dissipation, free convection and axial conduction effects are neglected; 

• Physical properties are taken as constant; 

• The duct wall is subjected to a uniform temperature (Tw); 

• The fluid enters the duct with a constant temperature (Ti). 

The mathematical formulation for this forced convection problem is dimensionless form is written as: 
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where, the constant m is related to the geometry of the duct. If m=0 the duct is rectangular (parallel-plates channel). 

 

Boundary Conditions 
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Inlet condition 
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For the analysis of the problem the following dimensionless parameterswere defined, given by equations (5a-i), with 

the objective of solving not only a particular problem, but a class of problems that are defined by the same proposed 

model. Where:
m -dynamic turbulent diffusivity and h - turbulent thermal diffusivity. 
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where ν is the kinematic viscosity, α is the thermal diffusivity of the fluid, r0 is the characteristic length, Dh= 2(2-m).r0 

is the hydraulic diameter and Pr, Re and Prt are, respectively, the numbers of Prandtl, Reynolds and turbulent Prandtl. 

In this paper adopted different turbulence models will be adopted, with different formulations for velocity 

distribution and for the momentum eddy diffusivity. Four situations will be analyzed, based on analytical expressions 

proposed for the universal velocity profile - Law of the Wall (Kestin and Richardson,1963 ; Kakaç et. al, 2014 and 

Santos et al.,2001). 

Case 1: The turbulence model is the fully-developed two-layer model for velocity distribution together with two-

layer model for the momentum eddy diffusivity, based on the works of Prandtl(1910), Taylor (1916)and Schlichting 

(1960). 

The two-layer turbulent velocity distribution is taken as: 
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The two-layer model for the momentum eddy diffusivity is taken as: 
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Case 2: The turbulence model is the fully-developed three-layer model for velocity distribution together with three -

layer model for the momentum eddy diffusivity, based on the works of Von Karman (1939). 

The three-layer turbulent velocity distribution is taken as: 
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( )++ += yln5.25.5u
;   

30+yfor
    , turbulent core                     

 

(12) 

 

The three-layer model for the momentum eddy diffusivity is taken as: 
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Case 3: The turbulence model is the fully-developed two-layer model for velocity distribution together with two-

layer model for the momentum eddy diffusivity, based on the works of Rannie (1956). 

The two-layer turbulent velocity distribution is taken as: 
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The two-layer model for the momentum eddy diffusivity is taken as: 
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Case 4: The turbulence model is the fully-developed three-layer model for velocity distribution (Reichardt,1951; 

Kays and Crawford, 1980), together with two-layer model for the momentum eddy diffusivity (Reichardt,1951 and 

Spalding,1961). 

The three-layer turbulent velocity distribution is taken as: 
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The two-layer model for the momentum eddy diffusivity is taken as: 
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where k1=0.4, k2=0.407 and E=10. 

 

Several dimensionless groups were included in equations (6-24), which are defined in the following form: 
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where f  is the friction factor. In the present work, empirical correlations are used for the friction factor, based on the 

works of Filonenko(1954), Dean (1978) and Bhatti and Shah (1987). 

Filonenko correlation for parallel-plates channel: 
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Dean correlation for parallel-plates channel: 
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Bhatti and Shah correlation for parallel-plates channel: 
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3. APPLICATION OF THE CLASSICAL INTEGRAL TRANSFORMING TECHNIQUE 

 

The CITT presents itself as an established methodology, having been used successfully in several classes of heat 

transfer models and fluid mechanics, as can be seen in Mikhailov (1984). In order to apply the technique, it is necessary 

to establish an auxiliary eigenvalue problem, as well as to define a transform-inverse pair in order to reduce the original 

problem, which is a partial differential equation, in a system of ordinary differential equations. Secondly, the inverse 

formula can be used to obtain the solution to the original problem proposed by Cotta (1993), (1998). 

 

3.1 Auxiliary problem of eigenvalue 

 

The auxiliary problem for determining the temperature field is taken as: 
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Several studies point out great difficulties in the calculation of eigenvalues in the mentioned auxiliary problem, due 

to the limitations in the numerical schemes used by Santos et al. (2001) and Özisik et al. (1989). This fact delayed the 

emergence of analytical solutions for the thermal field in the study of turbulent forced convection. Özisik et al. (1989), 

Brown et al. (1997) and Santos et al. (1995) used the signal counting method of Mikhailov (1983), (1984), to 

circumvent the difficulties associated with the eigenvalue problem. Cotta (1993) developed a method using the integral 

transformation technique, based on the ideas of the generalized integral transform technique (GITT), which allows 

solving eigenvalue problems with a high degree of difficulty. In the present work, GITT is used to determine the 

eigenvalues (i), the eigenfunctions, i (ϛ), and the norms (Ni), as described by Cotta (1993). The generalized integral 

transformation method was implemented in computational code with the aid of the Wolfram Mathematica 12.0 

software, to solve the associated eigenvalue problem. 

 

3.2 Integral transformation of the temperature field 

 

The pair transformed integral, defined for this problem is given by: 
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Applying integral operators in equation (1), with the aid of the auxiliary problem and the transformed-inverse pair, it 

is possible to transform this partial differential equation into a system of ordinary differential equations given by: 
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This system has a classical analytical solution, given by: 
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At this point, it is worth noting that the application of CITT in solving the proposed problem is equivalent to the 

application of the traditional method of separation of variables. As CITT is a generalization of the method of separation 

of variables, making it possible to extend the analysis to cases in which the source terms are not null, there is no burden 

on the choice made in the present study. On the contrary, the model discussed in the present work can be taken as a 

reference and can later be extended to more generic models that impose restrictions on the use of the variable separation 

method. 

 

3.3 Temperature field solution 

 

Using the inverse formula it is possible find the general solution of the temperature field for the proposed physical 

problem. The temperature field for the thermal input region takes the form: 
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From this solution it is possible to calculate the average temperature and the number of local Nusselt through the 

expressions: 
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For the evaluation of the asymptotic Nusselt number and validation of the results obtained in the present work, the 

expression obtained by Gnielinski (1976), is used given by: 
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The expression obtained by Prandtl (1910) and Taylor (1916), is also used, given by: 
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4. RESULTS 

 

For the purposes of benchmarking the results of the present study, results were compared to these found in the 

specialized literature, particularly in Gnielinski (1976), Taylor (1916), Özisik et al. (1983) and Santos et al. (2001), 

showing the robustness and effectiveness the combination of CITT and GITT in the solution of the proposed physical 

problem. In this paper the situation of a flow inside a channel of parallel flat platesis analyzed, as can be seen in 

presented results in tables 1 and 2 and figures (1-3), considering different values of Reynolds and Prandtl.  

For all the graphs and tables contained in this section, 200 eigenvalues and 200 corresponding eigenfunctions were 

used, which guarantees good convergence to the solution even in the thermal entrance region. The analysis is carried 
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out for the four established turbulence models, where it is also possible to compare the results with each other. The 

friction factor is computed based on empirical correlations, based on the work of Filonenko(1954), Dean (1978), Bhatti 

and Shah (1987). For all the cases analyzed in the present work, Prt = 1 is considered, analogously to the studies carried 

out by Özisik et al. (1989) and Quaresma et al. (2001). The integral balance is used to estimate the variation in the local 

Nusselt number until reaching the converged value. 

The tables 1 and 2 show the remarkable influence that the Reynolds and Prandtl numbers exert on the prediction of 

the asymptotic convective Nusselt number. For a specific number of Reynolds, an increase in the number of Prandtl 

leads to an increase in the asymptotic Nusselt number. This behavior also occurs with the increase of Reynolds number, 

keeping the same number of Prandtl, as we can also observe in figure 1. The above mentioned facts make it possible to 

conclude that the increase in Reynolds and Prandtl numbers produces an increase in heat transfer rates, causing the axial 

length of thermal development to be reduced, as can be seen in Figures 2 and 3. 

As predicted, the results obtained in the present study, shown in tables 1 and 2, do not show perfect compliance with 

the results predicted by the correlations of Gnielinski (1976) and Taylor (1916), because it is the comparison of 

experimental studies with analytical-numerical simulation studies. However, it is possible to observe in tables 1 and 2 a 

very similar variation between the results, which validates the study developed in the present work. 

 

Table 1. Asymptotic Nusselt number considering different numbers of Reynolds and Prandtl for the turbulent flow 

between flat plates. 

 

Flat Plates - Prt = 1 

Pr = 0.72 Pr = 1 Pr = 2 
Re =1.104 Re = 5.104 Re = 1.105 Re = 1.104 Re = 5.104 Re = 1.105 Re = 1.104 Re = 5.104 Re = 1.105 

38.31a 123.91a 211.26a 41.69a 141.75a 247.16a 47.58a 177.16a 326.20a 

38.17b 123.82b 210.54b 41.52b 141.64b 246.27b 47.37b 177.03b 324.86b 

39.87c 129.41c 219.26c 43.46c 148.23c 257.14c 49.77c 185.74c 341.14c 

36.34d 116.95d 198.48d 41.52d 138.27d 237.67d 54.51d 192.93d 339.83d 

36.20e 116.87e 197.85e 41.36e 138.16e 236.88e 54.29e 192.79e 338.66e 

37.81f 122.17f 205.62f 43.25f 144.58f 246.40f 56.93f 202.15f 352.90f 

36.25g 116.89g 198.10g 41.01g 137.03g 235.21g 53.47g 189.67g 332.87g 

36.12h 116.81h 197.46h 40.85h 136.93h 234.44h 53.25h 189.52h 331.73h 

37.73i 122.10i 205.21i 42.74i 143.30i 243.85i 55.86i 198.73i 345.56i 

32.63j 102.43j 174.29j 37.36j 121.95j 209.96j 49.03j 171.32j 301.43j 

32.52k 102.36k 173.72k 37.22k 121.86k 209.26k 48.84k 171.19k 300.39k 

33.87l 107.01l 180.62l 38.85l 127.54l 217.73l 51.15l 179.51l 312.99l 

32.49m 101.00m 171.69m 37.19m 120.21m 206.74m ------ ------ ------ 

30.24n 105.97n 181.85n 35.41n 128.37n 222.65n 48.25n 185.79n 328.93n 

29.93o 105.78o 180.40o 35.09o 128.15o 220.99o 47.87o 185.52o 326.80o 

33.67p 118.33p 198.48p 39.07p 142.23p 241.65p 52.38p 202.91p 353.14p 

31.06q 101.59q 173.44q 39.35q 130.99q 224.90q 59.91q 208.59q 363.59q 

30.76r 101.41r 172.10r 38.98r 130.76r 223.22r 59.42r 208.27r 361.13r 

34.43s 113.02s 188.80s 43.41s 145.14s 244.09s 65.30s 228.67s 391.48s 

32.49t 101.00t 171.70t 37.19t 120.20t 206.70t ------ ------ ------ 

 

a – Present work: Nusselt with friction factor of Filonenko , (1954) (Model of Prandtl and Taylor) 

b – Present work: Nusselt with friction factor of Shah and Bhatti, (1987) (Model of Prandtl and Taylor) 

c – Present work: Nusselt with friction factor of Dean, (1978) (Model of Prandtl and Taylor) 

d – Present work: Nusselt with friction factor of Filonenko, (1954) (Model of Von Karman) 

e – Present work: Nusselt with friction factor of Shah and Bhatti, (1987) (Model of Von Karman) 

f – Present work: Nusselt with friction factor of Dean, (1978) (Model of Von Karman) 

g – Present work: Nusselt with friction factor of Filonenko, (1954) (Model of Rannie) 

h – Present work: Nusselt with friction factor of Shah and Bhatti, (1987) (Model of Rannie) 

i – Present work: Nusselt with friction factor of Dean, (1978) (Model of Rannie) 

j – Present work: Nusselt with friction factor of Filonenko, (1954) (Model of Reichardt and Spalding) 

k – Present work: Nusselt with friction factor of Shah and Bhatti, (1987) (Model of Reichardt and Spalding) 

l – Present work: Nusselt with friction factor of Dean, (1978) (Model of Reichardt and Spalding) 

m – Özisik et al., (1989) 

n – Gnielinsk's empirical correlation with Filonenko's, (1954) friction factor  

o – Gnielinsk's empirical correlation with Shah and Bhatti's, (1987) friction factor 

p – Gnielinsk's empirical correlation with Dean's, (1978) friction factor 
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q – Taylor's empirical correlation with Filonenko's, (1954) friction factor 

r – Taylor's empirical correlation with Shah and Bhatti's, (1987) friction factor 

s – Taylor's empirical correlation with Dean's, (1978) friction factor 

t – Santos et al., (2001). 

 

 

 

 

 

 
 

Figure 1. Local Nusselt number for turbulent flow between flat plates, considering Pr = 1, Prt = 1 and 

turbulence model of Prandtl and Taylor (Flat plates). 
 

 

 

Figure 2. Temperature field for turbulent flow between flat plates, considering Pr = 1, Prt = 1, Re = 

1.104 and friction factor of Filonenko (1954). 

 

 

 

Figure 3. Temperature field for turbulent flow between flat plates, considering Pr = 1, Prt = 1, Re = 

1.105 and friction factor of Filonenko, (1954). 
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The Table 2 shows the influence that the friction factor and the Reynolds and Prandtl numbers exert on the 

prediction of the dimensionless thermal input length. In the table 2 analyzes the case of flow between flat plates. In 

table it is considered the combination of different numbers of Reynolds (1.104, 5.104 and 1.105), different numbers of 

Prandtl (0.72, 1 and 2) and different correlations for the friction factor Dean, (1978), Filonenko, (1954) and Bhatti-

Shah, (1987). The results presented allow to estimate, for each investigated situation, a trend value for the 

dimensionless length of thermal development, which can represent extremely important information in practical 

situations. 

Table 2. Dimensionless length of thermal development for the turbulent flow between flat plates. 
 

Flat Plates - Prt = 1 

Pr = 0.72 Pr = 1 Pr = 2 
Re =1.104 Re = 5.104 Re = 1.105 Re = 1.104 Re = 5.104 Re = 1.105 Re = 1.104 Re = 5.104 Re = 1.105 

0.2100a 0.0676a 0.0399a 0.1921a 0.0588c 0.0347a 0.1670a 0.0471a 0.0266a 

0.2108b 0.0676b 0.0400b 0.1929b 0.0588b 0.0349b 0.1676b 0.0471b 0.0267b 

0.2022c 0.0649c 0.0388c 0.1847c 0.0565c 0.0333c 0.1598c 0.0451c 0.0256c 

0.2189d 0.0712d 0.0428d 0.1910d 0.0599d 0.0360d 0.1447d 0.0432d 0.0257d 

0.2197e 0.0712e 0.0429e 0.1917e 0.0599e 0.0361e 0.1453e 0.0433e 0.0257e 

0.2109f 0.0683f 0.0411f 0.1838f 0.0577f 0.0348f 0.1388f 0.0410f 0.0248f 

0.2204g 0.0713g 0.0429g 0.1942g 0.0606g 0.0364g 0.1480g 0.0441g 0.0262g 

0.2212h 0.0713h 0.0430h 0.1950h 0.0606h 0.0365h 0.1486h 0.0441h 0.0262h 

0.2123i 0.0684i 0.0412i 0.1868i 0.0582i 0.0352i 0.1420i 0.0419i 0.0253i 

0.2492j 0.0831j 0.0493j 0.2164j 0.0693j 0.0407j 0.1629j 0.0490j 0.0286j 

0.2500k 0.0832k 0.0494k 0.2171k 0.0694k 0.0409k 0.1635k 0.0490k 0.0287k 

0.2407l 0.0794l 0.0479l 0.2086l 0.0666l 0.0394l 0.1566l 0.0471l 0.0278l 

 

a –Dimensionless length of thermal development with friction factor of Filonenko, (1954) (Model of Prandtl and 

Taylor) 

b – Dimensionless length of thermal development with friction factor of Shah and Bhatti, (1987) (Model of Prandtl and 

Taylor) 

c – Dimensionless length of thermal development with friction factor of Dean, (1978) (Model of Prandtl and Taylor) 

d –Dimensionless length of thermal development with friction factor of Filonenko, (1954) (Model of Von Karman 

e – Dimensionless length of thermal development with friction factor of Shah and Bhatti, (1987) (Model of Von 

Karman) 

f – Dimensionless length of thermal development with friction factor of Dean, (1978) (Model of Von Karman) 

g –Dimensionless length of thermal development with friction factor of Filonenko, (1954) (Model of Rannie) 

h – Dimensionless length of thermal development with friction factor of Shah and Bhatti, (1987) (Model of Rannie) 

i – Dimensionless length of thermal development with friction factor of Dean, (1978) (Model of Rannie) 

j –Dimensionless length of thermal development with friction factor of Filonenko, (1954) (Model of Reichardt and 

Spalding) 

k – Dimensionless length of thermal development with friction factor of Shah and Bhatti, (1987) (Model of Reichardt 

and Spalding) 

l – Dimensionless length of thermal development with friction factor of Dean, (1978) (Model of Reichardt and 

Spalding) 

 

In the present study the thermal input length is defined as the maximum axial length required for the fluid to reach 

its final temperature with a margin of 10% relative difference. In practical situations this information may be relevant in 

the dimensioning process of the thermal equipment. 

As predicted, the results differ from each other, but not with a very significant difference. Through this table it is 

possible to estimate, for a specified situation, the dimensional length of thermal development through equation 5a, that 

is, it is possible to find how many "meters" of duct are necessary to reach the thermal development. 

 

5. FINAL CONSIDERATIONS 

 

It is concluded from the analysis of the results obtained that the simultaneous application of the CITT and GITT is 

effective in solving the problem proposed, since the presented formulation was validated with the results found in the 

specialized literature. In this way, the objectives were reached satisfactorily, where the influence of the Reynolds and 

Prandtl numbers on the development of the thermal field and the local Nusselt number was shown. The analysis made 

in the present work is of extreme relevance, since the study of turbulence assumes great importance in engineering 

swing tothe great number of practical applications in which it is present. In applied areas such as heat exchanger design, 

reactor engineering and power engineering, laminar flow is an exception instead of the rule. 
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