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Abstract. Fluid flows may, eventually, can be presented in sufficient condition for certain structures to transition to
turbulence to appear, the so-called hydrodynamic instabilities. The relevance of these instabilities is manifested as they
lead to more dissipative flow configurations or even bringing orthogonal variations in properties which one wishes to
control. Therefore, it is necessary to understand how these instabilities evolve, in order to control and predict the behavior
of such flows. In this sense, the objective of this work is to diagnose, with a view to the application in engineering, certain
types of instabilities namely: roll waves occurring in turbulent flow over an inclined channel. From linear stability
analyzes, at first, a mathematical model of the literature is recovered to define the formation criteria of roll waves. In a
second step, it is shown mathematically that the instability criteria are based on the Froude number, this occurs when the
specific mass variation is large, given a slender interface.
Keywords: Roll waves, Instabilities, Flows.

1. INTRODUCTION

Fluid flows are essentially an interdisciplinary subject, which have wide areas of application, such as: flows through
obstacles (bridge pillars, buildings, wind farms), geophysical flows (river floods and overflows, landslides), debris and
mud flows, snow avalanches, volcanic eruptions), industrial flows (dam spillways, pipe bank), among others. The behavior
of these flows is subject to several conditions, principles, and laws which make scene to inumerous problems. In these
scenarios, flows can be presented in sufficient conditions for certain structures of transition to turbulence to appear, the
so-called hydrodynamic instabilities. Therefore, it is necessary to obtain control of these instabilities in order to know,
control, and predict the behavior of such flows.

Hydrodynamic instabilities appear in the neighborhood of the steady and uniform regime established by the flow in
an attempt to balance the forces involved. Usually, such a balance of forces is constituted between active ones - field
forces and surface forces, and resistive forces - usually associated with viscous friction and depending on the physical
and rheological properties of the flowing fluid. The conditions for the flow to become unstable, and for the propagation,
amplification and/or maintenance of small disturbances/instabilities to occur, will depend on the flow conditions, and on
the intrinsic characteristics of the disturbances made.

In this scenario, roll waves instabilities can arise from the unbalance of gravitational and viscous forces acting on the
flow, which can amplify small disturbances and culminate in a well-defined periodic variation on the free surface of the
flow similar to a shock wave (Balmforth and Mandre, 2004; Noble, 2007; Ferreira, 2013). Due to its oscillatory nature,
the presence of instabilities in natural and artificial flows could potentialize the unpredictability of flows and losses of
many levels (civil, urban, and social infrastructure) arising from it.

Several researchers have made efforts in an attempt to find the necessary and sufficient mathematical conditions for
such instabilities to occur. The roll waves has been studied in depth by the scientific community since Jeffreys (1925),
and have been improved with Ishihara et al. (1954); Vedernikov (1945); Balmforth and Mandre (2004); Noble (2007);
Di Cristo and Vacca (2005), for example. The dynamic characteristics of these instabilities as well as their conditions of
propagation, however, still deserve efforts from the scientific community, in favor of their better knowledge.

Thus, this work comes with the motivation to reevaluate some of the classic cases of literature and to improve the
analyzes already conducted, with the purpose of better understanding the conditions of maintenance and appearance of
roll waves. The specific objective of this work is to conduct a linear stability analysis on the governing equations system
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(shallow waters, Saint-Venant equations), and to culminate with information on temporal branches and convectivity,
following the work of Di Cristo and Vacca (2005). In this work, it is shown that the convectivity is respected, despite the
discrepancy found in the equation with that of the literature.

2. METODOLOGY

To carry out this work, we used the one-dimensional Saint-Venant mathematical model that describes the behavior
of free surface flows when the flowing fluid is Newtonian, when the regime is transient and turbulent. Such a system
represents the conservation of the flow mass and momentum. In order to assess the appearance of roll wave instabilities,
it was sought, through a mathematical tool, to develop linear analysis of stability.

The linear stability theory is a tool that uses the linearization of the governing equations of the problem and the
application of an infinitesimal disturbance to the base flow, followed by the asymptotic expansion with respect to a small
wavenumber. This tool has made it possible to obtain important information on problems of various kinds. Some of the
relevant information stands out as: knowledge of the problem’s stability domain (marginal curve of stability); the evolution
of disturbances (amplificiation or evanescence); identification of characteristics of developed (steady) instabilities. Several
authors bring this methodology, among them Ferreira et al. (2011); Pascal et al. (2013); Di Cristo et al. (2010); Noble
(2007); Ferreira (2013).

The main concepts that involve such analysis can be exemplified through the Ginzburg-Landau equation (Eq. (1)), as
well explained by Huerre and Rossi (1998b),

∂ψ

∂t
+ U

∂ψ

∂x
= µψ +

∂2ψ

∂x2
− |ψ|2ψ (1)

where ψ(x, t) is the target variable that describes the phenomenon and depends on time t and space x, and U and µ are
controlling parameters for the phenomenon.

In order to carry out the linear stability analysis, the equations are linearized disregarding terms of an order greater
than or equal to 2, and can be rewritten as

∂ψ

∂t
− L(∇, ψ0(x, t), R)ψ = 0 (2)

where L is a linear operator, R is a set of phenomenological parameters (in this case U and µ), ψ0(x, t) is the state
of equilibrium, solution of the problem. This means that for a specific set of parameters R, the solution will converge
asymptotically to ψ0(x, t) if small disturbances are applied to the system, i.e. the system is Lyapunov stable.

For this work, we desire to know how the function ψ(x, t) evolves when the solution assumes the so-called normal
modes

ψ(x, t) = A exp[i(kx− ωt)] (3)

where A is the amplitude, k is the wavenumber, and ω is the frequency of the solution. Thus, it is possible to rewrite the
base equation of a given problem, applying Eq. (3) in Eq. (2) and obtaining the dispersion equation to the problem:

D(k, ω,R) = 0 (4)

From this equation, it is possible to observe the temporal evolution of small disturbances, making the consideration
that k is real, or still, observe the spatial evolution, making the consideration that ω is real (Huerre and Monkewitz, 1990;
Briggs, 1964). It is intended here to reevaluate such analyzes for a specific problem of the literature brought by Di Cristo
et al. (2010), and to observe the growth rates of instabilities, celerity of such waves, as well as their convectivity. The
entire mathematical procedure will be considered as a result of this work, and follows in the next section.

3. RESULTS

3.1 Mathematical model

Mathematical modeling consists of the art of transforming problems of reality into mathematical problems that arise in
the most diverse areas, whether they come from physics, engineering, among others. In addition, the mathematics applied
to these problems has helped us in a decisive way for the understanding of natural phenomena, allowing the representation
of the concepts and processes involved, and also providing the understanding of aspects of problems that are not easily
revealed.

However, to model fluid flows on a free surface, a set of equations has been studied for more than three decades, and
constitute the basis for the hydrodynamic models of shear flows, among which we highlight:

• Mass conservation equation, also called the continuity equation:

∂ρ

∂t
+∇ · (ρu) = 0 (5)
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• Equation of momentum conservation:

∂

∂t
(ρ~u) +∇ · (ρ~u⊗ ~u) = −∇p+∇ · τ + ρ~g (6)

These are partial differential equations where the independent variables are the spatial coordinates and time t, and the
following dependent variables: velocity field ~u = (u, v, w, t), pressure field p(x, y, z, t), viscous tensor τ(x, y, z, t).
Among other parameters of interest: mass specifies ρ, gravity acceleration ~g.

In addition, to determine the most appropriate mathematical model capable of representing the desired phenomenon
for the flow, some hypotheses can be considered, for example: steady or transient flow, uniform or non-uniform, laminar,
turbulent, incompressible, among others. These hypotheses transform the system and produce a set of partial differential
equations that can only be solved using simplifying hypotheses.

In the case of problems that model shallow water the simplifying hypotheses are (Ferreira, 2013):

• the characteristic length (L) must be greater than the flow depth (h). This hypothesis shows that only long waves,
that is, waves where the length is greater than the height, are taken into account;

• the width of the channel (d) is much greater than the height of the column (h) of the fluid, thus, it is possible to
simplify the calculation of the resistance forces, ignoring the contribution of sidewalls, considering only the fluid
tension with the bottom of the channel, rendering the problem two-dimensional.

A mathematical model of shallow waters, Saint-Venant equations, is presented by Di Cristo and Vacca (2005), in
which the one-dimensional governing equations are given by:

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
+
τb
ρh

= gS0 (7)

∂h

∂t
+ u

∂h

∂x
+ h

∂u

∂x
= 0, (8)

where x is the longitudinal coordinate of the flow, t the time, g is the acceleration of gravity, ρ the specific mass, S0 the
slope of the bed and τb the shear stress.

To mathematically evaluate the problem, the Eq. (7) and Eq. (8) system is rewritten in dimensionless variables. For
this process, the scales of the various parameters must be chosen appropriately in order to provide coefficients that can
represent proportions between flow characteristics. The dimensionless variables (denoted by ˜ ) and scales were chosen
and given as follows:

• Length scale: x̃ =
xS0

h0
and h̃′ =

h′

h0

• Velocity scale: ũ′ =
u′

u0

• Time scale: t̃ =
tS0u0
h0

• Froude number: F =
u0√
gh0

where u0 and h0 are the flow velocity and height for the steady and uniform solution, and u′ and h′ are disturbed quantities
of flow velocity and height.

Substituting these variables in the equations Eq. (7) and Eq. (8) and manipulating them algebraically, the result is
expressed by the following equations:

∂ũ′

∂t̃
+
∂ũ′

∂x̃
+

1

F 2

∂h̃′

∂x̃
+

1

F 2

(
2ũ′ − h̃′

)
= 0, (9)

∂h̃′

∂t̃
+
∂h̃′

∂x̃
+
∂ũ′

∂x̃
= 0 (10)

Deriving Eq. (9) in relation to the variable x̃ and Eq. (10) in relation to the variable x̃ and t̃ respectively, get:

∂2ũ′

∂x̃∂t̃
+
∂2ũ′

∂x̃2
+

1

F 2

∂2h̃′

∂x̃2
+

1

F 2

(
2
∂ũ′

∂x̃
− ∂h̃′

∂x̃

)
= 0, (11)
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∂2ũ′

∂x̃2
= − ∂

2h̃′

∂x̃∂t̃
− ∂2h̃′

∂x̃2
(12)

and

∂2ũ′

∂x̃∂t̃
= −∂

2h̃′

∂t̃2
− ∂2h̃′

∂x̃∂t̃
(13)

Substituting the equations Eq. (12) and Eq. (13) in Eq. (11) get the following equation:

∂2h̃′

∂t̃2
+ 2

∂2h̃′

∂t̃∂x̃
+

(
1− 1

F 2

)
∂2h̃′

∂x̃2
+

1

F 2

(
3
∂h̃′

∂x̃
+ 2

∂h̃′

∂t̃

)
= 0 (14)

Following the theory of classical linear stability, the perturbation h̃′ is decomposed into elementary waves like
exp i(kx̃− ωt̃), with k = kr + ki the dimensionless complex wavenumber and ω = ωr + iωi the dimensionless complex
frequency. The substitution of such a disturbance in the equation Eq. (14) results in the quadratic dispersion equation,
Eq. (15),

D(k, ω, F ) = F 2i(ω − k)2 − k2i− 2ω + 3k = 0 (15)

From the equation Eq. (15) the analytical form of the solution can be deduce, also called time branches ω(k). So,
considering k = kr

ω±(k) = k − i

F 2
±
√

k

F 2
(k + i)− 1

F 4
, (16)

These temporal branches, Eq. (16), confirm the ones presented by Di Cristo and Vacca (2005), and can be empoloyed
to study the evolution of the solution over time and space. Equation (16) can be employed to obtain the marginal curve of
stability observing the growth rate of small disturbances as shows Eq. (17),

Im {ω±(k)} > 0 (17)

The existence of instabilities is represented by the imaginary part of the branches ω±(k), composing the rate of
temporal growth of the instabilities through a spatial disturbance (Briggs, 1964; Huerre and Rossi, 1998a; Fiorot and
Maciel, 2019). In these conditions, when Eq. (17) is verified, the domain favorable to the propagation of instabilities can
be obtained. Applying Eq. (17) in Eq. (16), have to

F > 2 (18)

Thus, through this analysis of temporal linear stability, it is identified that the control parameters F , that is, there is a
minimum Froude number, Fc = 2, above which instabilities will be amplified in this system. In order to validate these
observations, Fig. 1 illustrates the growth rate of disturbances ωi as a function of the real wavenumbers kr for various
Froude numbers.
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Figure 1. Growth rate of instabilities ωi as a function of the wavenumber for different Froude numbers.

It can be seen in Fig. 1 that for different numbers of Froude two temporal branches coexist, this is due to the quadratic
characteristic of the dispersion equation (Eq. (15)). The increase in the instability rate occurs for Froude numbers greater
than 2, as both branches are positive, that is, instability is growing.
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Indeed, it is worth noting that this development corroborates the classic developments already brought by the literature
as Jeffreys (1925) which, using the Saint-Venant model, disregarding the diffusive effects, culminated in a critical value of
Froude’s number, Fc = 2, for turbulent flows of high Reynolds number, this being one of the first to systematize the roll
wave formation criterion. It should also be noted that the base model used by Di Cristo and Vacca (2005) is also verified.
This criterion is of paramount importance since it establishes a minimum value for the relationship between inertial effects
and the effect of gravity for which this type of instability may arise (Fiorot, 2012).

Another important parameter that can be considered for this analysis is the wave propagation velocity (or celerity) U .
It has been shown that the celerity can also be a parameter of control of the instabilities (Needham and Merkin, 1984).
The propagation velocity is calculated through the real part of the branches ω±(k) and is determined by

U =
Re {ω±(k)}

k
, (19)

Fig. 2 illustrates the results of the calculations.
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Figure 2. Velocity of propagation of disturbances as a function of the wave number for different Froude numbers.

This result shows that growing waves (those with F > 2) propagate more slowly than evanescent waves (thoese with
F ≤ 2), and for F = 2 the slope of the curve changes sense in relation to the other curves on which the tests were made.
As we have performed a long wave approach, where the valid waves have low wavenumbers, the limit values for wave
propagation velocities were estimated depending on the Froude number, as shows Fig. 3.

10
1

10
2

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

F

U

 

 

k → 0

k = 10
−2

k = 1

k → ∞

Figure 3. Wave propagation velocity as a function of the Froude number for different wavenumbers k.

Figure 3 shows the celerity U have a strong dependance on the Froude number only for high wavenumbers. For low
wavenumber, U assumes a constant value. We higlight that the limits of x-axis were fixed for growing waves (F > 2) and
that for great Froude numbers, the physical meaning can be lost. The observations allow the following summarization:

• for k → 0, lim
k → 0

U =
3

2
;
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• for k → ∞, lim
k → ∞

U = 1.

Needham and Merkin (1984) reported the mathematical observation that the parameter U , when valid for roll waves

generation 1 < U <
3

2
, is intrinsically related to the flow properties and wave characteristics. It can lead to a change in

the point of equilibrium of the problem in a way that a Hopf bifurcation can be obtained.
In the Saint-Venant model, Eq. (7) and (8), from which the dispersion equation (Eq. (15)) was obtained, there are

only two spatial branches. Briggs (1964) proved that the absolute character of instability can be defined by looking for
complex frequencies ω0 for two (or more) space branches k(ω). Based on Eq. (15), following Briggs (1964); Huerre and
Monkewitz (1990), we corroborate the equation obtained by Di Cristo and Vacca (2005):

k(ω) =
2F 2ω + 3i±

√
4F 2ω(ω + i)− 9 + 8iω

2 (F 2 − 1)
(20)

The positive definitiveness of ω0
i is a necessary condition for the absolute character of instability. The sufficient

condition comes analyzing from ω values sufficiently large, that is, ωi > ωmax
i . From the k(ω) space branches that

coalesce to ω = ω0, the instability will be absolute if for ωi > ωmax
i at least two of these branches are placed on opposite

sides of the real k axis. As the merging points of the space branches correspond to the saddle points of the temporal
branches ω(k), the necessary condition of the Briggs (1964) criterion can be analyzed alternatively by looking for the

complex wave number k0, and to determine this it is enough that
dω

dk
= 0.

Thus, the rate of change of ω(k) can be calculated from Eq. (16) as follows:

dω

dk
= 1± 2k + i

2
√
F 2(k2 + ik)− 1

= 0, (21)

Solving Eq. (21) for the variable k we get that k = k0 which is given by:

k0 =
−i(F 2 − 1)±

√
(F 2 − 4)(F 2 − 1)

2(F 2 − 1)
(22)

Replacing Eq. (22) in Eq. (16) ω0 can be determined:

ω0 = ω(k0) =
−i(F 4 + F 2 − 2)± i(F 2 + 1)

√
(F 2 − 4)(F 2 − 1)

2F 2(F 2 − 1)
(23)

that presents different results than those obtained by Di Cristo and Vacca (2005) (equation 3.8), as shown in Eq. (24):

ω0 =
−i(F 2 − 2)± i

√
(F 2 − 4)(F 2 − 1)

2F 2
(24)

For the present work, when studying the original one developed by those authors, a reassessment was made in Eq. (16)
to find what possible equation could have been employed to obtain the Eq. (24). In order to obtain the result presented by
them, the temporal branches should have been defined as:

ω±(k) = k +
i

F 2
±
√

k

F 2
(k + i)− 1

F 4
, (25)

a solution that is not in agreement with the previous result found in Eq. (16).
Considering ω = ω0 in Eq. (23), it is possible to conclude that the instability of the Saint-Venant flow model has a

convective nature, since there are only finite singularities of the type pinch characterized by negative imaginary parts, and
this occurs for values of F > 2, as shown in Fig. 4.
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Figure 4. Imaginary part of finite singularities like pinch versus Froude number.

The Fig. 4 provides evidence of the negative definition of the ω0
i function. Thus, as the literature points out, there is a

growth rate of instability ωi for values of F greater than 2 with ω0
i always negative, featuring convective type instabilities.

However, in this reassessment of the problem, the equation ω0 presented by Di Cristo and Vacca (2005), and the one
determined in this work, are different, as illustrated by Fig. 4.

4. CONCLUSIONS

In the present work, the Briggs criterion was applied, referring to the analysis of the singularities of the branching
point of the dispersion relation. An analysis of linear spatial stability was performed that corroborated the convective
nature of the instability.

The results showed that the rate of temporal growth of the unstable wave depends strongly on the frequency of the
disturbance and the control parameter F , as predicted by the theory.

Based on the analysis of the wave propagation velocity, it was noticed that there is a strong dependency of the velocity
on the wavenumber for small values of k. It has been noticed for large wavenumber the velocity propagation is constant.
Based on the analysis carried through Fig. 3, it was possible to obtain the domain for possible wave propagation velocities

1 < U <
3

2
, which is in agreement with analysis carried by Needham and Merkin (1984).

Finally, it was confirmed the work of Di Cristo and Vacca (2005) as an important part of the roll waves literature, even
though a verified discrepancy on some features ω(k0) were detected, where a sign in Eq. (25) made a difference in the
geometric representation of finite singularities. In spite of this mathematical discrepancy, the analysis did not show any
variation on the convective nature of the instability.
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