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Abstract. Large Eddy Simulation (LES) is a promising technique to simulate turbulent flows, based on the elimination of
flow scales smaller than a characteristic length, and direct resolution of the largest scales. There is a variety of subgrid-
scale models available in the literature to describe the turbulence in small scales, with different levels of complexity and
computational cost. Although many advances have been achieved since the development of the LES technique, there is
still no consensus on a definitive subgrid model for generic use in engineering applications. The objective of this work is
to analyze the effect of subgrid modeling in LES of turbulent coaxial jets. Simulations were carried out for a test problem
using the Smagorinsky, Germano and Velocity Structure function models, and results were compared with experimental
data from the literature. The best results for average properties were found with the Smagorinsky model with an optimal
ad hoc coefficient, while the dynamic model of Germano was the one that best described the turbulent features. These
results show that this type of comparative analysis is of fundamental importance to obtain reliable results when addressing
new problems.
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1. INTRODUCTION

Turbulence is a phenomenon present in most flows observed in nature and in engineering applications. Turbulent
flows are unstable and their properties exhibit fluctuations that are time and space dependent, and one of their most
striking feature is the multiplicity of scales. The Large Eddy Simulation (LES) is a promising technique to simulate
turbulent flows, based on the elimination of all scales of the flow smaller than a characteristic length scale ∆. It allows
capturing the anisotropic turbulence that occurs in the large scales by directly solving the intermediate scales, while the
small scales (whose behavior is no significantly influenced by the geometry of the problem (Tennekes and Lumley, 1972))
are described by homogeneous isotropic turbulence models. The separation of the scales is performed through the proper
application of a low-pass filter in the system of equations, which results in the so called LES equations, able to describe
the flow in the largest scales (Lesieur et al., 2005). In terms of computational cost, LES is an intermediate methodology
between the other techniques traditionally used in simulation of turbulent flows (DNS and RANS).

In the framework of LES, there are a variety of models to describe the interaction between the solved and unsolved
scales, called subgrid-scale (SGS) models, with different mathematical and physical foundations and levels of complexity.
Examples are the Smagorinsky model (Smagorinsky, 1963), the dynamic model of Germano et al. (DSGS) (Germano
et al., 1991) and the Velocity Structure Functions (VSF) (Métais and Lesieur, 1992). The analysis of the performance of
existing models is an important step for their application in problems of interest and in the development of new methods
(Löffler et al., 2008).

Coaxial turbulent jets are relevant in several practical applications in combustion and propulsion. Lele and collabora-
tors (Bodony and Lele, 2008; Brès and Lele, 2019) have presented reviews on the application of LES to simulate coaxial
turbulent jets, showing that there is an interaction between the numerical method and the SGS modeling, and that there
is no consensus in the literature about the most suitable SGS model for such purpose. In this sense,the objective of this
work is to carry out a comparative analysis of the effect of subgrid modeling on LES of turbulent coaxial jets of constant
density. The Smagorinsky, DSGS and VSF subgrid-scale models were employed in the LES of a benchmark problem,
and results for the average velocities and turbulence intensities are compared to experimental data (Amielh et al., 1996;
Djeridane et al., 1996). The simulations are carried out with the PMLES code (Pinho and Muniz, 2020), designed to run
on a hybrid CPU-GPU architecture, allowing running simulations in a computational domain with 1× 108 points using a
single computing node in a GPU card.
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2. METHODOLOGY

2.1 LES Modeling

In the LES methodology, the filtering operation is responsible to separate mathematically a variable f (x, t) in two
components: one related to the large scales of the flow to be solved f (x, t), and other to the small scales to be modeled
f ′ (x, t) (also called subgrid scales):

f (x, t) = f (x, t) + f ′ (x, t) (1)

This approach is also known as Leonard decomposition (Pope (2000)). The filtering consists of the convolution of the
variable to be filtered on the filter function G

f (x, t) =

∫
D

f(x′, t)G(x− x′ : t)dx (2)

where D is the domain on which the operation must be performed.
The filtering process aims to eliminate or smooth out fluctuations that are smaller than the predefined cutoff wave

number. The challenge is to find a good balance between filter size, accuracy and computational cost. LES modeling
involves two filtering processes: a dimensional filter (δ) and a grid filter (∆) (Kuo and Acharya, 2012). The phenomena
that occurs in a scale smaller than the grid filter cannot be captured by any of the filters, and they are modeled. The scales
smaller than grid filter (∆) are called sub-grid scales.

LES modeling allows using either explicit or implicit filters, provided that they represent the properties of the sub-grid
terms. Most applications in LES use the constant volumetric filter, also called top-hat filter (Silva Freire et al., 2002)

G(x) =

{
1/∆3, if |xi| ≤ ∆/2, i = 1, 2, 3;
0, otherwise, (3)

which is an implicit filter, considering that the characteristic size of the filter is equal to the mesh spacing length. In this
case the filtering and differentiation operation commute. This approach is also called Schumann filtering (Huai, 2006)
and was used in this work.

In the present work, Favre averaging was applied to the conservation equations. A filtered variable f is defined as:

f̃ =
ρf

ρ
, (4)

and the following relations are verified (Kuo and Acharya, 2012):

ρui = ρũi, (5)
ρuiuj = ρũiuj . (6)

A variable can be then decomposed into its Favre filtered component f̃ and its subgrid component f ′:

f(x, t) = f̃(x, t) + f ′(x, t). (7)

This procedure is applied to the velocity field. Variables whose effects of the density are inherent to the measurement
process, such as pressure, stress tensors and the specific mass itself, do not need to be filtered by the Favre average. For
these variables, the conventional time averaging can be used (Kuo and Acharya, 2012). As a result of the filtering process,
the momentum equation becomes

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
=

∂p

∂xi
+ µ

(
∂2ui
∂xj2

+
∂2uj
∂xi2

)
(8)

Details of the application of the filter in the momentum equation can be seen in Moint et al. (Moin et al., 1991) and
Kuo and Acharya (Kuo and Acharya, 2012). The nonlinear term of the filtered equation (Eq. 8) results in a product of two
filtered variables, making their solution unfeasible. This nonlinear term can be treated using the Leonard decomposition
in terms of the Favre filter (Sagaut, 2006), as defined in Eqs. 1 and 4, so that

ρuiuj ≡ ρ (ũi + ui′) (ũj + uj ′)

ρuiuj = ρũiũj + ρũiuj ′ + ρui′ũj + ρui′uj ′. (9)

Adding and subtracting the term ρũiũj , and replacing in Eq. 8 we have

∂ (ρui)

∂t
+
∂ (ρũiũj)

∂xj
=

∂p

∂xi
+ µ

(
∂2ũi
∂xj2

+
∂2ũj
∂xi2

)
− ∂

∂xj

[
ρũiũj − ρũiũj + ρũiuj ′ + ρui′ũj + ρui′uj ′

]
. (10)
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The subgrid-scale stress tensor (σij)sgs is then defined as

(σij)sgs = ρuiuj − ρũiũj (11)

(σij)sgs = ρ (ũiuj − ũiũj) , (12)

(σij)sgs = ρũiũj − ρũiũj + ρ
(
ũiuj ′ + ui′ũj

)
+ ρui′uj ′

(σij)sgs = Li,j + Ci,j +Ri,j (13)

where Li,j is the Leonard-stress tensor that represents the interaction between the resolved scales (that results in the
subgrid contributions), Ci,j is the Cross-stress tensor that represents the interaction between the resolved scales and the
unresolved scales, and Ri,j is the Reynolds-stress tensor, that represents the interaction between the unresolved small
scales. The conservation equations can be then written as follows:

∂ρ̄

∂t
+
∂ρ̄ũi
∂xi

= 0; (14)

∂ (ρ̄ũi)

∂t
+
∂ (ρ̄ũiũj)

∂xj
= − ∂p

∂xi
+
∂(σij)sgs
∂xi

+
1

Re

(
∂2ũi
∂xj2

+
∂2ũj
∂xi2

)
. (15)

An ideal SGS model should provide a correct description of the interaction between the solved large scales and
unsolved small scales, allowing the flux of kinetic energy between the scales in both directions (forward and reverse
energy cascades). In this work, the three tested models, are classified as functional models (Sagaut, 2006) and are based
on the hypothesis that the action of the sub-grid scales on the solved scales is essentially of energetic nature, as a eddy
viscosity (Schmitt, 2007). The concept of eddy viscosity assumes that the mechanism for energy transfer from the solved
scales to the subgrid ones is analogous to the molecular mechanism. In this case, the subgrid stress tensor can be written
as:

σsgsij = −νt
(
∂ũi
∂xj

+
∂ũj
∂xi

)
+

2

3
νt
∂ũk
∂xk

δij , (16)

Since the study of acoustic interactions and compressibility effects are outside the scope of this work, Eq. 16 does not
include the isotropic portion (Pierce and Moin, 2004; Pierce, 2001). The combination of the eddy viscosity µt with the
molecular viscosity can be used to define a dimensionless effective viscosity µe = µ+µt

µ , allowing the Eq. 15 to be
rewritten as

∂ (ρ̃ũi)

∂t
+
∂ (ρ̃ũiũj)

∂xj
= − ∂p

∂xi
+
µe
Re

(
∂2ũi
∂xj2

+
∂2ũj
∂xi2

)
. (17)

The three methodologies used to compute the SGS stress tensor are briefly presented in the following subsections.

2.1.1 Smagorinsky Model

The Smagorinsky model (Smagorinsky, 1963) is the most traditional SGS model, and despite its simplicity, it provides
good quality results for many problems. According to this model, the eddy viscosity is evaluated as

µt = ρ(Cs∆S)2|S̃|, (18)

where

|S̃| =

√
2S̃ijS̃ij (19)

∆S = 3
√

∆x∆y∆z, (20)

being S̃ij is the strain rate tensor and Cs the so called Smagorinsky constant. The positive characteristics of the Smagorin-
sky model are the easy implementation, lower computational cost and satisfactory results for a large number of engineering
applications. Their main weaknesses include the excessive dissipation near surfaces, the inability of reproducing the re-
verse energy cascade, and the necessity of defining the ad hoc constant Cs, according to the flow characteristics. Large
values of Cs may introduce significant dissipation on the model, smoothing the turbulent features of the flow. On the
other hand, the use of a small value for Cs may destabilize the solution procedure. There is no consensus about a general
value of Cs to be used in the simulations of shear flows, and a wide range of values has been suggested. In this work, we
use Cs = 0.060, which was the value that led to results (obtained with the PMLES solver) exhibiting the best agreement
with the experimental data for the turbulent coaxial jet under investigation, as demonstrated in Pinho (2020).
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2.1.2 Dynamic Model of Germano - DSGS

To overcome some of limitations of Smagorinsky model, Germano et al. (1991) derived a dynamic subgrid-scale
eddy viscosity model, using the concept of similarity of scales (Bardina et al., 1980; Germano, 1990). This model uses
the strain deformation field on two different scales, and spectral information of the field of large scales to extrapolate
the strain on the small scales. The mathematical development is based on a double filtration process with two different
characteristic lengths (Germano et al., 1991; Lilly, 1992): the first is the LES filter already presented, and the second is
called test filter, which is indicated by the hat symbol (according to Lilly (1992), it is recommended that ∆̂ = 2∆ ). The
following equation is used to evaluate dynamically and locally an equivalent of the Smagorinsky constant Cs (x, t), which
replaces Cs in Eq. 18:

Cs (x, t) =
1

2

LijMij

MijMij
(21)

where

Lij = (ρũiũj)
∧

−

(
ρũi
∧

ρũj
∧)
ρ
∧ (22)

Mij = ∆2|S̃|S̃ij
∧

−∆
∧2
|S̃
∧

|S̃
∧

ij (23)

The main limitation of the Smagorinsky model (use of an ad hoc constant) is then overcome. It should be pointed that
the Eq. 21 can lead to negative values for Cs (x, t) , reproducing the backscatter energy effect. To ensure stability, the
Cs (x, t) ≤ 0.17 and Cs (x, t) | µe ≥ 0 restrictions were imposed in the present work, as suggested by Sagaut (Sagaut,
2006).

2.1.3 Velocity Structure Function - VSF

Chollet and Lesieur (1981) developed a methodology to calculate turbulent viscosity in the Fourier space, with the
objective of obtaining the energy spectrum for solved flow scales without using information from small scales. According
to this method, the turbulent viscosity in the Fourier space can be calculated as

νt (κc, t) = νt
+

√
E (κc, t)

κc
(24)

where νt+ = 0.267 is a constant determined by the energy balance and E (κc, t) is the energy spectrum. According to
Batchelor (Batchelor, 1953) there is a correspondence between the energy spectrum E (κ, t) and the so called velocity
structure function F2 (x, r, t), defined in physical space, such that

E (κc, t) = 0.03∆F2 (x, r, t) , (25)

where F2 (x, r, t) is replaced by F2t (x, r, t), which is the the truncated second-order local velocity structure function that
can be calculated in LES (Métais and Lesieur, 1992), defined by

F2t (x, r, t) = 〈‖u (x + r, t)− u (x, t) ‖〉‖r‖=∆ (26)

on which the operator 〈〉 indicates the spatial average around the point x inside a sphere of radius r. The combination of
equations above results in

νt (x,∆, t) = 0.104CK
−3/2∆

√
F2t (x,∆, t). (27)

The detailed development of the Velocity Structure Function approach is presented in Métais and Lesieur (1992). Ac-
cording to Lesieur (2012) the use of this model leads to good results for free shear flows, being less dissipative than the
Smagorinsky model.

2.2 Numerical Details

Details of code implementation and numerical methodology are thoroughly presented in the introductory paper of
PMLES (Pinho and Muniz, 2020). The PMLES solver was developed for running LES in mixed architectures employing
GPU (graphic processing units) computing, which has becoming more popular in LES (Markesteijn and Karabasov, 2018;
Terrana et al., 2020).

In summary, the filtered equations (Eq. 17) are discretized by the finite difference method, using second-order schemes
and a regular three-dimensional structured cartesian grid with uniform spacing. The use of a regularly spaced grids
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Figure 1. (a) Computational domain of the test problem and characteristic dimensions. (b) Characteristic dimensions and
velocities ate the nozzle.

avoids the propagation of errors due to filter size variations (Piomelli, 1999; Ilyushin and Krasinsky, 2006). Temporal
discretization was performed using a three-stage second-order Runge-Kutta scheme (Blazek, 2015), with a dimensionless
time step of ∆t = 1.75 × 10−4, which ensures CFL stability. We should note that use of an explicit scheme is quite
efficient when working on a SIMT (Single Instruction Multiple Thread) architecture of GPU cards (Quadros, 2016),
because it enables a massively parallel execution of thousands of threads independently and simultaneously (Ruetsch
and Fatica, 2011). The pressure field for the incompressible flow is computed using the SOLA (SOLution Algorithm)
method (Hirt et al., 1975; Wilson et al., 1988; Fortuna, 2000). The implementation was performed using CUDA Fortran
programming to run on a suitable single workstation. Pinho and Muniz (2020) have shown that speedups of order of 55
are possible with this hybrid implementation.

2.3 Description of the test problem

To carry out the analysis, we chose the turbulent coaxial round jet described in Amielh et al. (1996) and Djeridane et al.
(1996). A schematic description of the geometry of the experimental apparatus is shown in Fig. 1. The domain consists
in a rectangular duct section with a circular coaxial duct for the high velocity fluid injection. Air at standard conditions
flows in both ducts. The original setup has dimensions L/D ' 50 and H/D ' 11. Due to the high computational cost
of the full problem, and considering that the analysis is focused on the near field, the length of computational domain was
reduced to L/D = 35.

The computational domain was discretized using Nx = 1004 and Nz = Ny = 317 points, resulting on a regular mesh
spacing of 3.49× 10−2 and a domain with ∼ 1× 108 cells. Despite using a Cartesian mesh, the circular injection duct of
the jet was relatively well modeled. The momentum flux deviation by the cubic cells was evaluated and remained below
1 %.

The jet properties as defined in Fig. 1 are the same as in the experimental works (Amielh et al., 1996; Djeridane et al.,
1996), i.e., inlet jet velocity Uj = 12 m/s, and coflow velocity Ucoflow = 0.09 m/s, resulting in a Reynolds jet number
of Re =

ρUjD
µ = 20650. The inlet boundaries and the rigid boundary walls (far from the regions of interest) are modeled

by Dirichlet conditions, and a Neumann boundary condition for fully developed flows was applied at the outlet, assuming
that the gradient of normal momentum flux is null. For the inlet jet zone, a fully developed velocity profile for circular
duct Abramovich (1963) was set:

ũ (r)

ũmax
=

(
1− r

R

)1/7

. (28)

For the coflow zone, a planar velocity profile was defined. In both inlet zones, the velocity fluctuations were not included.

3. RESULTS

The turbulent flow in the coaxial jet described in the previous section was simulated by LES using the three presented
models for the subgrid-scale stress tensor. A comparison of results was done using profiles of time-averaged variables in
the central plane (2D) and along the main axis and selected cross sections (1D). The variables used in the analysis were
the dimensionless velocity Uadm and the dimensionless turbulence intensity u

′
adm, defined as

Uadm = (UL − Ucoflow)/(Uj − Ucoflow), (29)

u
′

adm = u
′

rms/ (UL − Ucoflow) (30)

where UL is the local axial component of average velocity and u′rms the root mean square velocity. These are computed
by

UL =

∑N
a=1 ua
N

(31)
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u′rms =

√∑N
a=1 (ua − 〈〈u〉〉)2

N
(32)

where ua is a sample of the axial instantaneous velocity on a given point of the domain. The average values were
calculated over N = 300 samples taken every 10000 steps of time after the steady regime is reached.

The analysis of the use of different SGS models to simulate the jet starts with a qualitative comparison of the average
velocity fields depicted in Fig. 2. Visual inspection of these fields shows that the jet potential core length (the region with
the highest velocities colored in dark red) was not significantly influenced by the use of different subgrid models. On the
other hand, the behavior of the transition zone exhibited a greater sensitivity to the SGS model used. The transition zones
of the jet predicted by the DSGS and VSF models are respectively the shortest and the longest. A more careful analysis
of these fields indicate that the average velocities at ∼ x/D = 10 in the simulation with the DSGS model are comparable
to those observed at ∼ x/D = 15 in the one performed with the VSM model, suggesting that the length of the transition
zone predicted by the latter is about twice as long as that predicted by the DSGS model. The use of the Smagorinsky
model predicted a jet with an intermediate potential core length.

These observations can be confirmed by analyzing the dimensionless axial velocity profiles along the main axis in
Fig. 3, where also is plotted the experimental result of Amielh et al. (1996), the LES result of Wang et al. (2008) and
the Similarity Law of jets of Chen and Rodi (1980). The three tested models indeed predict similar jet potential core
lengths, considering that the transition zone starts in the axial position ∼ x/D = 6 for all cases. On the other hand,
each model represents the transition region in a different way as discussed before. The use of the DSGS model led to
the highest spreading rate, indicated by the most significant reduction of Uadm in the central line, almost coinciding with
the similarity law of Chen and Rodi Chen and Rodi (1980). This higher spreading rate is then responsible for the shorter
transition zone. The VSF model led to the lowest spreading rate, while the Smagorinsky model (Cs = 0.060) presents an
intermediate behavior, leading to a profile closer to the experimental results Amielh et al. (1996), with smaller deviations
than the result of Wang et al. (2008).

A comparison between the turbulence intensity u
′
adm profiles along the main axis predicted by the three SGS models

is shown in Fig. 4. Again it is evident that the use of the DSGS model led to an earlier development of turbulence compared
to the others, better predicting the jet regime transition behavior and the turbulence intensity after the transition. Also, the
results clearly show the difficulty of the VSF model to predict the transition to turbulence, leading to the largest deviations
with respect to the experimental data and other approaches from the literature. The results produced by the Smagorinsky
model presented reasonable quantitative results, but good in qualitative terms. These variations on the development of
turbulence corroborate the behavior of the three subgrid models with respect to the jet spreading rate discussed above.

In general, these results show that DSGS and VSF models predict respectively the shortest and longest transition zones
and the highest and lowest spreading rates, while the Smagorinsky model presents an intermediate behavior, and exhibits
the best agreement of the axial and radial profiles of average properties with the experimental data used in the analysis.
A quantitative analysis of the performance of the three models evaluated is shown in Tab. 1, based on the mean squared
errors MSE1 and MSE2 with respect to the experimental data Amielh et al. (1996), defined as

MSE1
(
Uadm
∧)

=
1

N

N∑
a=1

[(
Uadm
∧)

a
− (Uadm)a

]2
(33)

MSE2

(
u

′

adm

∧)
=

1

N

N∑
a=1

[(
u

′

adm

∧)
a

−
(
u

′

adm

)
a

]2

. (34)

For MSE1, the lowest value was obtained for the simulation using the Smagorinsky model, while the lowest value of
MSE2 was obtained for the simulation using the DSGS model. Therefore, based on this result and the full analysis
discussed before, we can conclude that the Smagorinsky model better described the mean flow characteristics, while the
DSGS model better predicted the turbulent characteristics and jet structure.

Table 1. Comparison between mean squared errors for simulations with different SGS models.

SGS model MSE1(×103) MSE2(×103)
Smagorinsky (Cs = 0.060) 1.65 1.70
DSGS 4.72 0.56
VSF 10.30 4.41



12th Spring School on Transition and Turbulence
September 21st-25th, 2020, Blumenau, SC, Brazil

Figure 2. Average dimensionless axial velocity fields computed by simulations with the a) Smagorinsky (Cs = 0.060), b)
DSGS and c) VSF models.
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Figure 3. Profiles for dimensionless velocity Uadm along the main axis obtained with different SGS models, compared to
literature data Amielh et al. (1996); Wang et al. (2008); Chen and Rodi (1980).

Figure 4. Profiles for dimensionless turbulence intensity u
′
adm along the main axis obtained with different SGS models,

compared to literature data Amielh et al. (1996).

4. CONCLUSIONS

The main objective of this work was to evaluate the effect of subgrid-scale modeling of stress tensor in LES of a tur-
bulent coaxial jet. Simulations were performed using three SGS models (Smagorinsky, DSGS and VSF) and results were
compared to experimental data and other numerical results from the literature. The results showed that the Smagorinsky
subgrid model with Cs = 0.060 (value chosen in the analysis of Pinho (2020)), led to the smallest deviations for the
average velocities with respect to the experimental data. The dynamic model of Germano was the one that best described
the turbulent characteristics of the jet, even though it led to higher mean quadratic errors for the average values compared
to the Smagorinsky model, in addition to being computationally more expensive (about 21%). The transition to turbulence
and spreading rate was more suitably predicted by this method. The use of the Velocity Structure Function model did not
produce reasonable results in our case. According to Lesieur Lesieur et al. (2005), this model is indicated to simulate
flows where there is a transition to turbulence, however in our simulations the model did not show a good capacity to
capture this transition and consequently the transition of jet regimes.

This work demonstrates that a performance analysis of the existing models is an important step in the development
of new models for LES and their application in problems of interest, and that the most computationally expensive and
complex model may not be always the best choice. Then, in view of the results of this work and previous studies in
the literature, it is suggested that for LES of an unknown problem involving transition from laminar to turbulent flow,
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the DSGS model should be used. When the objective is to obtain reliable solutions at a cheaper cost to study a partic-
ular phenomenon (involving heat or mass transfer, for example), it may be worth looking for an adequate value of the
Smagorinsky constant Cs before its application.

Throughout the development of this work, we found that there are many important questions to be answered in the
LES context of turbulent jets. Although we know that it does not make sense to talk about mesh refinement it is interesting
to analyze the sensitivity of the simulations regarding the mesh used so that a clear mesh choice criterion can be built.
Apply methodologies to describe the turbulent inlet condicios and reassess the performance of the models, as it is possible
that these influence the performance of the models. Analyse the performance of the models tested here for other jets, in
order to assess the sensitivity of the performance of the sub-mesh models in terms of flow conditions.
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