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Abstract. A proposed turbulence model is based on the transport equations for the fluctuating kinetic energy and 

helicity, together with the statistical dynamic equation for the velocity-vorticity tensor, which is related to the 

divergence of the Reynolds stress. This work reports on initial steps towards constructing the computational tools for 

the calibration of such model. Actual calibration requires DNS or LES methods, which demands parallel processing in 

computational cluster, whilst the work here presented was performed in a personal computer, simulating turbulent 

fluctuations by a laminar oscillating flow. The incompressible isothermal Navier-Stokes solver uses the semi-staggered 

mesh, the UNIFAES scheme for the discretization of advective and viscous terms of momentum equation, the Poisson 

equation for pressure to enforce continuity, and forth order Runge-Kutta integration of the momentum equation. 

Correlations being recorded are the fluctuating parts of kinetic energy and helicity, all terms of the respective 

transport equations, and the terms of the statistical dynamic equation for the velocity–vorticity tensor. These are 

computed with both second and forth order central differencing, and Simpson´s integration rule for the statistical 

dynamic equations. Intensive checking is performed by comparing conceptually equivalent but numerically distinct 

expressions, such as advective and divergence forms of the advective terms, and others. 
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1. INTRODUCTION  

 

     The construction of a kinetic energy – helicity turbulence model was advocated in previous paper (Figueiredo, 

2018a). Briefly, helicity is defined as the scalar product of velocity and vorticity. Analogous to energy, helicity presents 

a conservation principle in inviscid flows. It has been a fruitful concept in meteorology and magneto-hydrodynamics, 

and its presence has been observed in physics literature about turbulence. It can be positive or negative valued, being a 

measure of the asymmetry of the flow, feature essential to turbulence phenomena which is not captured by the strictly 

positive scalars kinetic energy and energy dissipation rate, specific dissipation or enstrophy, which are used in present 

RANS and LES models.  

     The transport equation for fluctuating helicity is dependent on the mean vorticity, but not on the mean shear, forming 

a consistent pair with the transport equation for fluctuating kinetic energy, which depends on mean shear but not on 

mean vorticity. Vortex stretching, which is fundamental for turbulence decay, involves variations in the velocity and 

vorticity fields, being necessarily influenced by the fluctuating velocity-vorticity correlation.  

     Helicity is the trace of the velocity-vorticity tensor, whose skew-symmetric part is associated to the divergence of the 

Reynolds stress, required for the mean momentum equation. The deviatoric components of the velocity-vorticity tensor 

are also related to the Magnus effect (Tennekes and Lumley, 1972). Both vortex stretching and Magnus effects are 

present in the quasi-coherent structure called “hairpin vortex” observed on wall bounded flows, which begins very near 

the solid surface and extends to the order of magnitude of the boundary layer (Pope, 2000, Davidson, 2004). The vortex 

rising is due to the Magnus effect. Left Fig.1 sketches typical mean velocity and mean vorticity profiles in a boundary 

layer; velocity increases upward whilst vorticity decreases. The small black circle represents a vortex tube in direction 

𝑥3 , corresponding to the strait first filament in the right side of Fig. 1. Suppose a small perturbation displaces part of the 

filament upwards, as indicated in the second filament. This part is placed in a region of smaller vorticity but higher 

velocity, so that the Magnus effect starts to act, causing further displacement. The higher the vortex goes the stronger 

the Magnus effect, which so appears as the cause of instability that creates the hairpin shape. Vortex stretching results 

from advection with distinct mean velocities. 

     The proposal of the kinetic energy – helicity turbulence model is complemented by the statistical dynamic equation 

method to pursue the algebraic relations of the model, particularly for the velocity-vorticity tensor; such method has 

been applied with success to the turbulent transport of kinetic energy in shear flows (Figueiredo, 2016, 2018a).  

     Calibration of the model must employ DNS or LES, requiring clusters for parallel computation. However, the work 

reported here refers to the initial steps of the construction of the algorithms for computing the numerous statistical  
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Fig. 1 – Left: sketch of boundary layer mean velocity and vorticity, marking a vortex tube. Right: development of a 

small perturbation of the vortex tube into the hairpin shape. 

 

correlations, which is being performed with a personal computer. Within this limitation, turbulent situations cannot be 

effectively reproduced, and the testing of the statistics program is performed in oscillating laminar flows, where the 

initial difficulties can be appreciated, and the algebraic and programming correctness of the correlations can be verified. 

Of course, the mathematical operations of the Reynolds decomposition are valid for oscillating laminar flows. Although 

the resulting terms do not correspond quantitatively to turbulent flows, they will be referred according to the turbulent 

terminology. 

 

2. NAVIER-STOKES SOLVER 

     For incompressible isothermal Newtonian flows the continuity and Navier-Stokes equations are expressed as: 

 
𝜕𝒰𝑗

𝜕𝑥𝑗
= 0                                              (1) 

 
𝜕𝒰𝑖

𝜕𝑡
= −

𝜕(𝒰𝑖𝒰𝑗)

𝜕𝑥𝑗
+

1

𝑅𝑒

𝜕2𝒰𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝒫

𝜕𝑥𝑖
                                                                          (2) 

 

     Here 𝒰𝑗  represents the instantaneous velocity normalized by a characteristic velocity 𝑉𝑐ℎ , and  𝒫 is physical 

pressure plus hydrostatic head (𝜌𝑔𝑧) normalized by 𝑉𝑐ℎ
2  , where 𝜌 is density, g the gravitational acceleration and z the 

upward position. The spatial coordinates are made non-dimensional by a characteristic length 𝐿𝑐ℎ, and time  t  by 

𝐿𝑐ℎ 𝑉𝑐ℎ⁄ . The Reynolds number is  𝑅𝑒 = 𝜌𝑉𝑐ℎ𝐿𝑐ℎ 𝜇⁄ , where 𝜇  is the viscosity.  

     The momentum equation (2) is integrated explicitly. Continuity is satisfied by solving the pressure equation (3), 

which is obtained by taking the divergence of the momentum equation (2): 

 
𝜕2𝒫

𝜕𝑥𝑖𝜕𝑥𝑖
=

𝜕

𝜕𝑥𝑖
[−

𝜕(𝒰𝑖𝒰𝑗)

𝜕𝑥𝑗
+

1

𝑅𝑒

𝜕2𝒰𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
] −

𝜕

𝜕𝑡

𝜕𝒰𝑖

𝜕𝑥𝑖
                                      (3) 

 

     The last term of (3), time derivative of dilation, is discretized in time as:  

 
𝜕

𝜕𝑡

𝜕𝑢𝑖

𝜕𝑥𝑖
≅ (

𝜕𝑢𝑖

𝜕𝑥𝑖

𝑛+1
−

𝜕𝑢𝑖

𝜕𝑥𝑖

𝑛
) ∆𝑡⁄                                         (4) 

 

     Velocity divergence at future time n+1 is assumed nil, and it is made nil at n=0 by appropriate choice of initial 

conditions. Exact solutions of the pressure system of equations would produce nil divergence, but round off errors or 

incomplete iterative solutions generate some dilation; in these cases existing divergence at time n is computed to 

operate as a source term that reduces dilation itself. 

     This method was used first in the MAC algorithm (Harlow and Welsh, 1965), which popularized the staggered mesh, 

but is analogously applicable to the collocated and the semi-staggered meshes, leading to numerically distinct continuity 

and pressure equations. Fig. 2 sketches the two-dimensional continuity cells for the three meshes with the respective 

velocity components and pressure equation stencils. In all cases pressure is located at the center of the continuity cell, 

whilst the locations of the velocity components vary. 

     In the semi-staggered mesh the velocity components are collocated at the continuity cell vertexes. This mesh 

presented the best performance in comparison with the traditional staggered and collocated meshes in the cavity flow 

problem when the unrealistic singularities at the moving slid corners were removed (Figueiredo and Oliveira, 2009a, b). 

Distinct from the traditional meshes, it allows using fully regular grids close to walls parallel to the Cartesian axes, as  
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Fig. 2- Continuity cells and corresponding pressure equation stencils for staggered, cell center collocated and semi-

staggered meshes. 

 

well as to walls inclined to the axes by adjusting the cell aspect ratio. Due to this geometric flexibility, the semi-

staggered mesh was successfully applied to compute the steady-state flow in a channel with a gradual expansion region 

using entirely regular grid (Nascimento, 2019, Nascimento et al., 2020); it would analogously admit rectangular section 

ducts with contraction or bend.  

     As shown in fig. 2, the staggered mesh produces the most compact pressure cell, relating each node to its immediate 

neighbors through the second order central differencing. The collocated mesh produces double-spacing central 

differencing, forming multiple independent sets of systems of pressure equations whose result presents wiggly aspect. 

The semi-staggered pressure cell involves immediate and diagonal neighbors; if the mesh is square or cubic it reduces 

to the diagonal neighbors; wiggly solutions are also possible in both square and rectangular cases.  

     For simplicity, the numerical representation of the divergence, gradient and Laplacian operators in a 3D semi-

staggered mesh will be exemplified by the x-direction part or component. Integer values are adopted for the velocity 

locations, cell centers require half indexes. The derivative of the velocity component 𝓊 = 𝒰1 is: 

    
𝜕𝓊

𝜕𝑥𝑖−
1

2
,𝑗−

1

2
,𝑘−

1

2

≅
𝓊𝑖  ,𝑗,𝑘+𝓊𝑖  ,𝑗−1,𝑘+𝓊𝑖  ,𝑗,𝑘−1+𝓊𝑖  ,𝑗−1,𝑘−1−𝓊𝑖−1,𝑗,𝑘− 𝓊𝑖−1 ,𝑗−1,𝑘−𝓊𝑖−1  ,𝑗,𝑘−1−𝓊𝑖−1  ,𝑗−1,𝑘−1

4∆𝑥
                                          (5) 

              

     Analogous relations hold for the other components of the divergences of the velocity and for the momentum flux. 

The pressure gradient is exemplified as: 

    

𝜕𝒫
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2
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1

2
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1
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1

2

− 𝒫
𝑖−

1
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1

2
,𝑘+

1

2

− 𝒫
𝑖−

1

2
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1

2
,𝑘+

1

2

4∆𝑥
 

                  (6) 

     The resulting Laplacian of the pressure involves 27 nodes and is strongly non diagonally dominant. This was tackled 

by Santos and Figueiredo (2011) with sub-relaxation factors, but in the present work such complexity is avoided by 

employing the momentum interpolation procedure analogous to that used by Rhie and Show (1983) with the collocated 

mesh. It reduces to approaching the pressure second derivative by central differencing: 

 

𝜕2𝒫

𝜕𝑥2
𝑖−

1

2
,𝑗−

1

2
,𝑘−

1

2

≅
𝒫

𝑖+
1
2 ,𝑗−

1
2,𝑘−

1
2
 − 2 𝒫

𝑖−
1
2,𝑗−

1
2.𝑘−

1 
2

 + 𝒫
𝑖−

3
2 ,𝑗−

1
2,𝑘−

1
2

∆𝑥2                          (7) 

 

     Yet unpublished results indicate that this approximation has negligible influence on the velocity profile and even on 

the actual mass conservation for the semi-staggered mesh. The system of pressure equations is solved line by line in 

alternating direction pseudo-transient approach, usually with twenty iterations per momentum iteration. 

     

The discretization scheme UNIFAES belongs to a class of schemes whose interpolating curve for both advective and 

diffusive terms is based on the linear equation:
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 𝑢
𝑑∅

𝑑𝑥
−

1

𝑅𝑒

𝑑2∅

𝑑𝑥2 = 𝐾               (8) 

 

that locally approaches the equation of interest, considering ∅ as the dependent variable, and assuming velocity 

component 𝑢 to be locally constant, as well as term 𝐾, which represents all remaining terms of the equation (2), namely 

cross-flow, pressure and transient terms.  The solution to the approximate equation is: 

 

∅ = 𝐶1 + 𝐶2𝑒𝑥𝑝(𝑅𝑒. 𝑢. 𝑥) +
𝐾

𝑢
𝑥                          (9) 

 

The combined advective and diffusive flux in x-direction results, abstracting the Finite Volume integration on cell 

face:,  

 

𝜕(𝑢𝜙)

𝜕𝑥
− 𝑅𝑒−1 𝜕2𝜙

𝜕𝑥2
≅ (𝜙

𝑖
− 𝜙

𝑖+1
)

𝜋(𝑝𝑖+1 2⁄ )

Δ𝑥
+ (𝜙

𝑖
− 𝜙

𝑖−1
)

𝜋(𝑝𝑖−1 2⁄ )

Δ𝑥
+ 𝜑                                                                   (10) 

 

where 

 

𝜋(𝑝) =
𝑝

𝑒𝑥𝑝(𝑝)−1
                                                                                                                                            (11) 

 

𝑝
𝑖
= 𝑅𝑒. 𝑢𝑖. ∆𝑥             (12) 

 

𝜑 = [𝐾𝑖+1 2⁄  𝜒(𝑝𝑖+1 2⁄ ) − 𝐾𝑖−1 2⁄  𝜒(𝑝𝑖−1 2⁄ )]Δ𝑥                                                                                                         (13) 

 

𝜒(𝑝) =
𝜋(𝑝)−1

𝑝
+

1

2
                                                                                                                                                       (14) 

 

 

     . The best known Finite Volume scheme of this type is the so called Exponential Scheme (Spalding, 1972, Raithby 

and Torrance, 1974, Patankar, 1980), which neglects the source term 𝐾, allowing constants 𝐶1 and 𝐶2 to be determined 

easily by interpolating between two nodes, but loosing most of the physical realism. The first approaches to include the 

source term were LOADS, Locally Analytic Differencing Scheme (Wong and Raithby, 1979, Prakash, 1983), which 

estimates 𝐾 according to the summation of terms it represents, and Flux Spline (Varejão, 1979, Karski et al., 1989), 

which computes 𝐾 by imposing the continuity of the first derivative of the interpolating curves between all nodes by 

means of an iterative approach analogous to SIMPLE algorithm for pressure-velocity coupling. Both approaches are 

complex, and limited applications are found in literature.  

     The simplest and best succeeded scheme of this type is the Unified Finite Approaches Exponential-type Scheme, 

UNIFAES (Figueiredo, 1997), which computes the source term 𝐾 of the Finite Volume generating equation by recourse 

to Allen and Southwell´s (1955) Finite Difference scheme. This first ever exponential scheme determines 𝐾 at any 

central node by fitting interpolation curve (9) to the central node and the two immediate neighbors, in each direction, 

resulting: 

 

𝐾𝑖 = (𝜙
𝑖
− 𝜙

𝑖+1
)Π+ + (𝜙

𝑖
− 𝜙

𝑖−1
)Π−           (15) 

 

Π± =
𝜋(±𝑝𝑖)

Δ𝑥2
              (16)

              
     UNIFAES takes the mean of two nodal estimates of 𝐾 by Allen and Southwell’s approach to represent the source 

term between them, i.e.: 

 

𝐾𝑖±1 2⁄ = 0.5(𝐾𝑖 + 𝐾𝑖±1)            (17) 

 

     In comparisons with other finite-volume schemes, including Central Differencing, simple Exponential Scheme, 

Second Order Upwind, QUICK and LOADS, it has shown high stability and superior accuracy in a vast number of 

cases, including linear tests (Figueiredo, 1997), natural and mixed convection flows in porous media (Figueiredo and 

Llagostera, 1999, Llagostera and Figueiredo, 2000a, 2000b), and incompressible viscous flows (Figueiredo and 

Oliveira, 2009a, 2009b, Rodrigues, 2019, Rodrigues et al., 2020), presenting second order dominated errors even at 

moderate meshes. Three dimensional versions of the solver were presented by Santos and Figueiredo (2011) and 

Nascimento et al. (2020), with different approaches with respect to pressure.  
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     The referred solver used Euler integration towards steady state solution.  To increase the precision of the time-wise 

integration for the present work, the first order approach was substituted by a second order predictor-corrector method. 

The program also received two new routines, one for introducing controlled perturbations to the flow, other for 

recording instantaneous velocity, vorticity, pressure and shear at prescribed points in the domain to a text-file. This is 

read afterwards by a program that computes the correlations. 

 

3. KINETIC ENERGY – HELICITY TURBULENCE MODEL EQUATIONS 

     Instantaneous velocity and pressure are decomposed into mean and fluctuating parts, represented by capital and 

small letters respectively: 𝒰𝑖 = 𝑈𝑖 + 𝑢𝑖  and  𝒫 = 𝑃 + 𝑝. The turbulence model is defined by the mean continuity 

equation (18), the Reynolds averaged Navier-Stokes equations (19), the equation of transport of fluctuating kinetic 

energy in the form (20) or (21) and the equation of transport of fluctuating helicity (22) (Figueiredo, 2018): 

  
𝜕𝑈𝑗

𝜕𝑥𝑗
= 0               (18) 

               
𝜕𝑈𝑖

𝜕𝑡
= −

𝜕(𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗
−

𝜕(𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅)

𝜕𝑥𝑗
+ 𝑅𝑒−1 𝜕2𝑈𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
−

𝜕𝑃

𝜕𝑥𝑖
                                     (19) 

 

     Employing the continuity equation (18), term  𝑅𝑒−1 𝜕2𝑈𝑖 𝜕𝑥𝑗𝜕𝑥𝑗⁄  of eq. (19) can be alternatively written in terms of 

mean shear 𝑆𝑖𝑗 = 0.5(𝜕𝑈𝑖 𝜕𝑥𝑗⁄ + 𝜕𝑈𝑗 𝜕⁄ 𝑥𝑖) as 2𝑅𝑒−1 𝜕𝑆𝑖𝑗 𝜕𝑥𝑗⁄ .  

     The kinetic energy transport equation is obtained by multiplying the instantaneous Navier-Stokes equation by 𝑢𝑖. 

Depending on the form of the viscous term adopted, the energy equation assumes the forms (20) or (21); in most classic 

textbooks (Tennekes and Lumley, 1972, Hinze, 1975) the last term in Eq. (21) is considered the correct expression of 

the dissipation work. Because of this, the last term of Eq. (20) is called pseudo-dissipation in present text. 

 
𝜕𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅𝑈𝑗

𝜕𝑥𝑗
+

𝜕𝑢𝑗𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 𝑅𝑒−1 𝜕2𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗𝜕𝑥𝑗
= −

𝜕𝑢𝑗𝑝̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 𝑢𝑖𝑢𝑗 ⃐      

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝑅𝑒−1 𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
.                                  (20) 

 
𝜕𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅𝑈𝑗

𝜕𝑥𝑗
+

𝜕𝑢𝑗𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 𝑅𝑒−1 𝜕𝑢𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
= −

𝜕𝑢𝑗𝑝̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 𝑢𝑖𝑢𝑗 ⃐      𝑆𝑖𝑗 − 𝑅𝑒−1𝑠𝑖𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ .                                               (21) 

  
𝜕𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ̅𝑈𝑗

𝜕𝑥𝑗
−

1

𝑅𝑒

𝜕2𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗𝜕𝑥𝑗
=

𝜕𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅̅ 2⁄

𝜕𝑥𝑗
𝑊𝑗 − 𝑢𝑖𝑢𝑗 ⃐      

𝜕𝑊𝑖

𝜕𝑥𝑗
− 𝑤𝑗

𝜕𝑝

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅
+

𝜕𝑤𝑗𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
−

𝜕𝑢𝑖𝑤𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
− 𝑅𝑒−1 𝜕𝑢𝑖

𝜕𝑥𝑗

𝜕𝑤𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
.     (22) 

 

     In above expressions 𝑆𝑖𝑗  is the mean shear rate and 𝑊𝑖 is the mean vorticity: 

 

 𝑆𝑖𝑗 =
1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)                 (23) 

 

       

 

𝑊𝑖 = 𝜀𝑖𝑗𝑘

𝜕𝑈𝑗

𝜕𝑥𝑘
                    (24) 

 

     Complementary algebraic expressions are provided by the relation between the divergence of the Reynolds stress 

and the velocity-vorticity tensor, Eq. (25) (Tennekes and Lumley, 1972), and the statistical dynamic equation for the 

velocity-vorticity tensor¨, Eq. (26) (Figueiredo, 2018)  

    
𝜕𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
= −𝜀𝑖𝑗𝑘 𝑢𝑗𝑤𝑘̅̅ ̅̅ ̅̅ ̅ +

𝜕𝑢𝑗𝑢𝑗̅̅ ̅̅ ̅̅ ̅ 2⁄

𝜕𝑥𝑖
            (25) 

     

𝑢𝑖𝑤𝑘̅̅ ̅̅ ̅̅ =   𝑆𝑘𝑗𝑢𝑖 ∫ 𝑤𝑗
𝑡

𝑜
𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 𝑊𝑗𝑢𝑖 ∫ 𝑠𝑘𝑗𝑑𝑡

𝑡

𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
−

𝜕𝑊𝑘

𝜕𝑥𝑗
𝑢𝑖 ∫ 𝑢𝑗

𝑡

0
𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
− 𝑢𝑖 ∫

𝜕(𝑤𝑘𝑢𝑗−𝑤𝑗𝑢𝑘)

𝜕𝑥𝑗
𝑑𝑡

𝑡

0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 +

1

𝑅𝑒
𝑢𝑖 ∫

𝜕2𝑤𝑘

𝜕𝑥𝑗𝜕𝑥𝑗

𝑡

𝑜
𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
         (26)

         

     Statistical dynamic equations can be provided for other terms of the transport equations of kinetic energy and 

helicity, but are omitted here. On the other side, for completeness of the statistical description of the flow, the 

correlations of the equation of transport of enstrophy are included: (Tennekes and Lumley, 1972, which use the term 

“squared vorticity”) 

 
𝜕𝑈𝑗𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝜕𝑥𝑗
− 𝜈

𝜕2𝑤𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ̅ 2⁄

𝜕𝑥𝑗𝜕𝑥𝑗
= 𝑤𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ 𝑊𝑗 − 𝑤𝑖𝑢𝑗 ⃐       

𝜕𝑊𝑖

𝜕𝑥𝑗
+ 𝑤𝑖𝑤𝑗̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗 − 𝑤𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ −

𝜕𝑢𝑗𝑤𝑖𝑤𝑖 2⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝜕𝑥𝑗
− 𝜈

𝜕𝑤𝑖

𝜕𝑥𝑗

𝜕𝑤𝑖

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅
.     (27) 
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4. INTERPOLATIONS FOR CALIBRATION  

     Second and forth order central differencing derivations of velocity, vorticity and pressure were implemented in every 

term of the transport equations of kinetic energy, helicity and enstrophy. Furthermore, the UNIFAES interpolation (Eqs. 

10 to 17) for the combined advective and viscous net fluxes is included. 

. Since the Navier-Stokes solver is second order in time and space, second order approximations in space and 

trapezoidal time-wise integration of the statistical dynamic equations offer compatible order of approximation. 

However, deterioration of the quality of the approximations may be expected for the higher order correlations, 

suggesting the need for higher, forth order interpolating curves. Approximations employed are exemplified by x-

direction derivatives, omitting other indexes when no confusion emerges. Second order approximations are the classic 

central differencing: 

 
𝜕𝑢

𝜕𝑥𝑖
≅

𝑢𝑖+1−𝑢𝑖−1

2∆𝑥
                                       (28) 

 
𝜕2𝑢

𝜕𝑥2
𝑖

≅
𝑢𝑖+1−2𝑢𝑖+𝑢𝑖−1

2∆𝑥
             (29) 

 

     For divergence form interpolations: 

 
𝜕𝑢𝑣

𝜕𝑥 𝑖
≅

𝑢𝑖+1 2⁄ 𝑣𝑖+1 2⁄ −𝑢𝑖−1 2⁄ 𝑣𝑖−1 2⁄

∆𝑥
            (30) 

 

where  𝑢𝑖±1 2⁄  and 𝑣𝑖±1 2⁄   are obtained by linear interpolation from immediate nodes 𝑢𝑖 and 𝑢𝑖±1, and 𝑣𝑖 and 𝑣𝑖±1.  For 

similar expression with pressure, 

 
𝜕𝑢𝑝

𝜕𝑥 𝑖
≅

𝑢𝑖+1 2⁄ 𝑝𝑖+1 2⁄ −𝑢𝑖−1 2⁄ 𝑝𝑖−1 2⁄

∆𝑥
            (31) 

 

the required pressure in the momentum cell face center is obtained by interpolation from the values at cell vertexes, for 

example: 

 

𝑝𝑖−1 2,𝑗,𝑘⁄ = 
𝑝𝑖−1 2,𝑗−1 2,𝑘−1 2⁄⁄⁄  + 𝑝𝑖−1 2,𝑗+1 2,𝑘−1 2 ⁄⁄⁄ + 𝑝𝑖−1 2,𝑗−1 2,𝑘+1 2⁄⁄⁄  + 𝑝𝑖−1 2,𝑗+1 2,𝑘+1 2⁄⁄⁄

4
      (32) 

            

     The collocated pressure results from the mean of the eight staggered pressure values around, which equals the mean 

between 𝑝𝑖−1 2,𝑗,𝑘⁄  and  𝑝𝑖+1 2,𝑗,𝑘⁄ . 

     Forth order centered interpolations employed for correlations involving collocated velocities and vorticities are: 

     
𝜕𝑢

𝜕𝑥𝑖
≅

−𝑢𝑖+2+8𝑢𝑖+1−8𝑢𝑖−1+𝑢𝑖−2

12∆𝑥
            (33) 

 
𝜕2𝑢

𝜕𝑥2
𝑖

≅
−𝑢𝑖+2+16𝑢𝑖+1−30𝑢𝑖+16𝑢𝑖−1−𝑢𝑖−2

12∆𝑥
            (34) 

 

     For divergence form interpolations:  

 
𝜕𝑢𝑣

𝜕𝑥 𝑖
≅

−𝑢𝑖+2𝑣𝑖+2 + 8𝑢𝑖+1𝑣𝑖+1 − 8𝑢𝑖−1𝑣𝑖−1 + 𝑢𝑖−2𝑣𝑖−2

12∆𝑥
                                                                  (35) 

 

     Converting pressure from its staggered positions to the velocity positions puts a three-dimensional interpolation 

problem, which was solved by successive one-dimensional interpolations. The values of pressure and of its first 

derivative at the velocity positions are interpolated by means of centered third order polynomials according to: 

 

𝑝𝑖 ≅
−𝑝𝑖+3 2⁄  + 9𝑝𝑖+1 2⁄  + 9𝑝𝑖−1 2⁄  − 𝑝𝑖−3 2⁄

16
                       (36)

         
𝜕𝑝

𝜕𝑧𝑖
≅

−𝑝𝑖+3 2⁄ +27𝑝𝑖+1 2⁄ −27𝑝𝑖−1 2⁄ +𝑝𝑖−3 2⁄

24∆𝑧
          (37) 

 

     Despite based on third order polynomial, these estimates are forth order accurate. Consider velocity node 𝑖, 𝑗, 𝑘 at the 

center of the cube [𝑖 − 3 2 . . 𝑖 + 3 2⁄⁄ , 𝑗 − 3 2 . . 𝑗 + 3 2⁄⁄ , 𝑘 − 3 2 . . 𝑘 + 3 2⁄⁄ ] , which contains 64 pressure nodes. 

For example, pressure on plane 𝑖 is interpolated for each position   𝑗 ± 1 2⁄ , 𝑗 ± 3 2⁄ , 𝑘 ± 1 2⁄  and 𝑘 ± 3 2  ⁄ according 

to (36). Then, pressure on line j within plane i is interpolated analogously to (36) for each position 𝑘 ± 1 2⁄   and 
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𝑘 ± 3 2 ⁄ . Finally, pressure at node i,j,k  is also found by analogous procedure, and the pressure derivative in z direction 

by means of expression analogous to (37). By distinct routes this method generates six alternative estimates of the 

pressure at node i,j,k and two alternative estimates of the pressure derivative in each direction at that node; the values 

finally adopted are the means of the six pressure values and of the two derivative values.  

  

5. RESULTS 

     Present computations refer to the Couette flow, as sketched at Fig. 3, with normalized dimensions 5x1x1, having 

lower and upper impermeable adherent walls with normalized velocity 𝑈1 = 0 at 𝑥2 = 0 and 𝑈1 = 1 at 𝑥2 = 1, periodic 

conditions in span-wise direction 𝑥3 , with Reynolds number 600. The inlet and the initial conditions of the problem 

where simply 𝒰𝑖 = 𝒰1 = 𝑥2. Cubic cells are adopted to prevent numerically produced directional biases. The most 

refined mesh has been 240x48x48, which is about the limit of the computer or compiler employed. The domain is 

divided in three regions along its length: the first one fifth admits periodic perturbation, two fifths are used for 

measuring statistics, and two final fifths are computed with hyper viscosity to suppress perturbations, so that 

homogeneous Newman exit conditions can be applied.  

 

 
 

Fig. 3 – Sketch of numerical domain 

 

     Perturbations are designed as an oscillating field that enforces rotation around axis 𝑥3 with a Gaussian varying 

strength, centered on node (𝑥1
𝑂, 𝑥2

𝑂 , 𝑥3
𝑂) = (0.5,0.5,0.5), as follows. 

   

𝒇 = 𝑀. 𝑠𝑖𝑛(2𝜋𝜈𝑡). 𝑒𝑥𝑝 {− [
(𝑥1−𝑥1

𝑂)
2

𝜎1
2 +

(𝑥2−𝑥2
𝑂)

2

𝜎2
2 +

(𝑥3−𝑥3
𝑂)

2

𝜎3
2 ]} . [−(𝑥2 − 𝑥2

𝑂)𝒆1 + (𝑥1 − 𝑥1
𝑂)𝒆2]                 (38) 

 

where 𝒆1 and 𝒆2 are versors,  𝑀 = 166.66,  𝜎1 = 𝜎2 = 0.2,  𝜎3 = 0.4  and 𝜈 = 1.0. Results were obtained after waiting 

some time for the perturbation to be felt in the whole domain, referring to integration in the interval 25 ≤ 𝑡 ≤ 100, in 

which the flow is quasi-periodic. Noticeably, it is a smooth profile alternating at unit frequency; it is expected to allow 

asymptotic convergences to be detected within the refinement levels allowed.  

     Table 1displays the values of kinetic energy, helicity and enstrophy at 18 selected nodes regularly spaced on planes 

x=1.5 and x=2.5; the decrease of turbulence levels within these planes clearly reflects high dissipation levels. Central 

plane z= 0.5 is a plane of symmetry for kinetic energy and enstrophy, and a plane of skew-symmetry for helicity, which 

is negative at plane z=0.25, positive at plane z=0.75 and practically nil at the central plane z=0.5.      

     In principle, fluctuating kinetic energy  𝑘 = 𝑢𝑖𝑢𝑖̅̅ ̅̅ ̅ 2⁄  and helicity ℎ = 𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅  allow the definition of time scale  𝑇 =

𝑘
1

2⁄ |ℎ|⁄  , length scale   𝐿 = 𝑘 |ℎ| ⁄ , and turbulent Reynolds number  𝑅𝑒𝑡 = 𝑘
3

2⁄ 𝜐|ℎ|⁄  . Those time and length scales 

are also registered in Table 1, showing no relation to the scales of the imposed fluctuation. Since the symmetry plane z 

= 0.5 presents vanishing helicity, both time and length scales become huge at that plane. Of course a different pattern is 

to be observed in actual turbulent shear flows, but the possibility of nil helicity seems to prevent the use of referred time 

and length scales. For the other nodes the estimated time scales are in the range 4 to 9800, while the period of 

oscillation is unit. Multiplying such period by the mean advective velocity at positions y = 0.25, 0.5 and 0.75, the length 

scale of the wave would be likewise, i.e., 0.25, 0.5 and 0.75 respectively, while the estimated fluctuating length scale 

varies in the range 0.02 to 0.1. 
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Table 1. Turbulence levels at selected nodes 

 

  x = 1.5 x = 2.5 

z = 0.25 z = 0.5 z = 0.75 z = 0.25 z = 0.5 z = 0.75 

 

 

 

y = 0.75 

Node 7 8 9 16 17 18 

Kin.Energy 1.808E-5       2.492 E-5       1.808E-5       6.235 E-6       3.300E-6       6.235 E-6       

Helicity -3.260E-4       -7.173E-15       3.260E-4       -1.900E-4        2.101E-13       1.900E-4       

Enstrophy 2.126E-3       3.504E-4       2.126E-3       2.115E-3           3.418E-4       2.115E-3       

Time scale 1.30E+1      6.96E+11      1.30E+1      1.31E+1     8.64 E+9      1.31E+1     

Length scale 5.55E-2     3.47 E+9     5.55E-2     3.28E-2         1.57E+7     3.28E-2     

 

 

 

y = 0.5 

Node 4 5 6 13        14 15 

Kin.Energy 5.201E-5       6.355E-5       5.201E-5       7.338 E-7       1.829 E-7       7.338 E-7       

Helicity -1.588E-3       6.780E-12       1.588E-3       -3.272 E-5       4.496 E-13         3.272 E-5       

Enstrophy 1.731E-2       2.002E-2       1.731E-2       6.319 E-4       1.544 E-4       6.319 E-4       

Time scale 4.54E+0      1.18E+9      4.54E+0      2.62E+1      9.51E+8      2.62E+1      

Length scale 3.27E-2     9.37E+6     3.27E-2     2.24E-2     4.07 E+5     2.24E-2     

 

 

0.25yy 

   y = 0.25 

Node 1 2 3 10 11 12 

Kin.Energy 4.706E-8       6.497E-8       4.706E-8       2.995E-9       3.127 E-9       2.995E-9       

Helicity -4.708E-7       -9.250E-17       4.708E-7       -5.569E-9      -2.194 E-16       5.569E-9      

Enstrophy 6.117 E-6       5.656E-6         6.117 E-6       2.094E-8        2.759E-9       2.094E-8       

Time scale 4.61E+2      2.76E+12      4.61E+2      9.83E+3      2.55E+11      9.83E+3      

Length scale 9.99E-2     1.37E+8     9.99E-2     5.38E-1     1.42E+7     5.38E-1     

  

 

5.1. Transport equation for fluctuating scalars  
 

   Tables 2 to 4 present the terms of the transport equations for kinetic energy, helicity and enstrophy at nodes 4, 5 and 

9. Accuracy is evaluated by the unbalance of the equation, by comparing different algebraic forms of most terms, and 

by comparing second and forth order central differencing representations, as well as the combined advective-viscous 

term from UNIFAES. 

     The advection of kinetic energy can be computed in advective form Aa = 𝑈𝑗𝜕(𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝜕𝑥𝑗⁄  and in divergence form 

Ad = 𝜕(𝑈𝑗𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝜕𝑥𝑗⁄  , whose equivalence is associated to nil velocity divergence, 𝜕𝑈𝑗 𝜕𝑥𝑗⁄ = 0. Analogous 

advective and divergence forms exist for the turbulent transport term: Ta = 𝑢𝑗𝜕(𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝜕𝑥𝑗⁄  , Td = 𝜕(𝑢𝑗𝑢𝑖𝑢𝑖/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 𝜕𝑥𝑗⁄  

as well as for the pressure term Pa = 𝑢𝑗𝜕𝑝̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄  , Pd = 𝜕𝑢𝑗𝑝̅̅ ̅̅ 𝜕𝑥𝑗⁄  . As seen in Table 2, advective and divergence forms of 

the advective term present four digit equality, corresponding forms for turbulent transport term differ up to about 2% 

and for pressure term differ up to 8%. Differences between second and forth order central differencings are less than 

0.1%. in the case of advective transport, achieve 5% for turbulent transport and 9% for pressure.    

     In deriving the energy equation in the form (20), after the scalar multiplication of the momentum equation (2) by the 

velocity, the viscous term Vu=  𝑅𝑒−1 𝑢𝑖(𝜕
2𝑢𝑖) (𝜕𝑥𝑗𝜕𝑥𝑗)⁄   is decomposed as diffusion Df= 𝑅𝑒−1 𝜕2(𝑢𝑖𝑢𝑖/2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝜕𝑥𝑗𝜕𝑥𝑗⁄  

minus pseudo-dissipation Du= 𝑅𝑒−1(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ )(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ ). As reported in Table 2, for all these terms, differences 

between second and forth order are generally about unit, but achieve 4%. The differences between the global viscous 

term and the combination of its components are roughly 3% for the second order approximations and below 0.2% for 

the forth order interpolations.  

     For the alternative form (21) of the energy equation, the viscous term Vs= 𝑅𝑒−1 𝑢𝑖𝜕𝑠𝑖𝑗 𝜕𝑥𝑗⁄  is decomposed as 

transport of energy by viscous stresses Ts= 𝑅𝑒−1 𝜕(𝑢𝑖𝑠𝑖𝑗) 𝜕𝑥𝑗⁄   minus dissipation Ds= 𝑅𝑒−1𝑠𝑖𝑗𝑠𝑖𝑗 . Differences between 

second and forth order approximations achieve 7.6%. The forth order interpolations also show expressively greater 

coherence between the viscous terms.  

     The interpolation with Unifies agrees within negligible differences with the combination of advective and viscous 

terms by the central difference schemes, particularly the second order. The two forms of the production term, PS =         

-𝑢𝑗 ⃐  𝑆𝑖𝑗  and PU = - 𝑢𝑖𝑢𝑗 ⃐      𝜕𝑈𝑖 𝜕𝑥𝑗⁄  , differ at the level of round-off error. Notice the negative production of fluctuating 

kinetic energy as an example of lack of correspondence between the present fluctuating laminar flow and the physics of 

turbulence.  

     Because the flow is not rigorously periodic, some difference exists between the kinetic energy at the beginning and 

the end of the integration period, although it is a multiple of the period of oscillation. These differences divided by the  
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Table 2. Statistics of kinetic energy transport equation at selected nodes 

 

Term Node 4 Node 5 Node 9 

2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠%. 

Aa -8.129E-5 -8.127E-5 0.0 -1.277E-4 -1.276E-4 0.1 -1.284E-5 -1.284E-5 0.0 

Ad -8.129E-5 -8.127E-5 0.0 -1.277E-4 -1.276E-4 0.1 -1.284E-5 -1.284E-5 0.0 

      Aa≠Ad 0.0% 0.0%  0.0% 0.0%  0.0% 0.0%  

Ta -3.562E-8 -3.608E-8 1.3 6.200E-8 6.035E-8 2.7 -3.261E-8 -3.312E-8  1.5 

Td -3.486E-8 -3.606E-8 3.3 6.215E-8 5.900E-8 5.1 -3.333E-8 -3.339E-8  0.2 

Ta≠Td 2.1% 0.1%  0.2% 2.2%  2.2% 0.8%  

         Pa -1.197E-5 -1.217E-5 1.6   2.612E-6   2.572E-6   1.5   1.112E-5   1.114E-5  0.2 

         Pd -1.207E-5 -1.215E-5 0.7   2.438E-6   2.705E-6  9.9   1.022E-5   1.084E-5  5.7 

     Pa≠Pd     0.8%      0.2%       6.7%      4.9%        8.1%        2.7%  

Df -6.054E-6 -6.114E-6 1.0 -6.031E-6 -6.126E-6 1.6 4.098E-6 4.123E-6  0.6 

Du   5.531E-5   5.770E-5 0.7  6.616E-5  6.897E-5 4.1 9.725E-6 9.853E-6  1.3 

Vu -6.305E-5 -6.390E-5 1.3 -7.421E-5 -7.521E-5 1.3 -5.799E-6 -5.730E-6  1.2 

Vu≠Df-Du 2.7% 0.1%  2.7% 0.2%  3.0% 0.0%  

        Ts -8.226E-6 -8.725E-6 5.7 -6.390E-6 -6.918E-6 7.6 6.496E-6 6.882E-6  5.6 

Ds   5.292E-5   5.506E-5 3.9 6.560E-5 6.807E-5 3.6 1.236E-5 1.263E-5  2.1 

Vs -6.049E-5 -6.371E-5 5.1 -7.096E-5 -7.489E-5 5.2 -6.070E-6 -5.762E-6  5.1 

Vs≠Ts-Ds 0.1% 0.1%  1.4% 0.0%  3.4% 0.2%  

Vs≠Vu 4.1% 0.3%  4.3% 0.4%  4.5% 0.6%  

          Un             -7.521E-5             -1.215E-4             -1.694E-5 

Un≠Ad-Df       0.0%        0.1%        0.1%     0.0%       0.0%       0.1%  

PU -3.341E-5 -3.343E-5 0.1 -5.472E-5 -5.474E-5 0.0 -1.991E-6 -1.991E-6 0.0 

PS -3.341E-5 -3.343E-5 0.1 -5.472E-5 -5.474E-5 0.0 -1.991E-6 -1.991E-6 0.0 

PU≠PS 0.0% 0.0%  0.0% 0.0%  0.0% 0.0%  

Var. KinEn.                               6.971E-8             1.568E-7               1.417E-8 

Eq. (20) 

Unbalance 

1.492E-6   

   1.8 / 1.4   

3.770E-6 

4.6 / 3.6     
 1.928E-6 

1.5 / 1.3 

4.895E-6 

3.8 / 3.2 
 1.887E-6 

14.7 / 9.4 

2.003E-6 

15.6 / 9.9 
 

Eq. (21) 

Unbalance 

1.272E-6   

1.6 / 1.2   

3.746E-6 

4.6 / 3.6     
 1.725E-6 

1.4 / 1.1 

4.787E-6 

3.8 / 3.1 
 2.127E-6 

16.6 / 9.6 

1.708E-6 

13.3 / 9.1 
 

 

integration period are reported (Var.KinEn) as estimates of possible influence of this factor upon the computed means, 

being sensibly small.  

    The two last lines of Table 2 present the unbalances of equations (20) and (21), performed with the advective forms 

of the advective, turbulent transport and pressure terms; the divergence form unbalances are very close. In each space, 

the value of the residual is presented above; below two percentages are presented: first, the percentage relative to the 

maximum term of the balance equation, second the percentage relative to the square root of the sum of the squares of all 

terms of each equation. Unbalances are small for nodes 4 and 5, but achieve two digits for node 9.    

     The transport equation unbalances favored the second order interpolation in five among six comparisons of the two 

last lines of Table 2. This is not a general situation, quite the opposite: considering the 18 nodes, the mean unbalance of 

Eqs. (20) and (21) were 7.1% and 7.8% respectively for second order interpolations but only 6.0% and 6.1% 

respectively for forth order interpolations. This is also true for helicity and enstrophy, whose mean unbalances are 

12.2% and 6.1% respectively for second order interpolations and 12.0% and 3.7% for forth order interpolations. 

     Irrespective of such lack of generalization, the superiority of the second order residuals in most comparisons of 

Table 2 is in apparent contradiction with other comparisons of the same Table. The forth order interpolations produced 

more coherent results than second order interpolation in 14 among 18 comparisons between advective and divergence 

forms or between different forms of the viscous term; both orders matched with 0.0% discrepancies in 3 cases and the 

second order was more coherent in only one case of turbulent transport. 

     This contradiction regarding the superiority of second or forth order interpolations seems to indicate independence 

between the unbalance of equations and the discrepancies between alternative algebraic forms; the unbalance seems to 

represent an error which is not detectable by the comparisons between algebraic forms. Indeed, the residual may be 

much greater than the summation of the discrepancies of the various terms would suggest. For instance, the greatest 

discrepancy found in node 4 with second order interpolation is related to the difference of viscous terms Df-Du 

compared with Vu, which is 2.7% of 6.3E-5, equal to 1.7E-6, which is capable of explaining the unbalance; however, 

with forth order approximations in the same node 4, the residual is much greater than the summation of estimates of 

discrepancies. Similar phenomena occurs with nodes 5 and 9.  
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Table 3. Statistics of helicity transport equation at selected nodes 

 

Term Node 4 Node 5 Node 9 

2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 

Aa 1.955E-3 1.986E-3 1.6 -3.620E-12 -3.671E-12 1.4 -1.376E-5 -1.413E-5 2.6 

Ad 1.955E-3 1.986E-3 1.6 -3.628E-12 -3.672E-12 1.2 -1.376E-5 -1.413E-5 2.6 

   Aa≠Ad 0.0% 0.0%  0.2% 0.0%  0.0% 0.0%  

Ta 1.538E-6 1.631E-6 5.7 5.520E-14 6.020E-14 8.3 -9.224E-7 -9.638E-7 4.3 

Td 1.465E-6 1.604E-6 8.7 5.650E-14 6.069E-14 6.9 -9.352E-7 -9.669E-7 3.3 

Ta≠Td 4.7% 1.7%  2.3% 0.8%  1.4% 0.3%  

        Pa 2.400E-4 2.473E-4 3.0 -3.532E-12 -3.638E-12  2.9   2.071E-5   2.644E-5 21.7 

        Pd 2.419E-4 2.479E-4 2.4 -3.513E-12 -3.637E-12  3.4   1.929E-5   2.644E-5 27.0 

    Pa≠Pd      0.8%       0.2%        0.5%       0.0%       6.9%      0.0%  

Df 2.506E-4 2.631E-4 4.8 -2.414E-12 -2.540E-12 5.0 1.478E-4 1.504E-4 1.7 

Ds -2.078E-3 -2.189E-3 5.1 5.994E-12 6.297E-12  4.8 1.739E-4 1.713E-4 1.5 

Vu 2.352E-3 2.457E-3 4.3 -8.465E-12 -8.847E-12 4.3 -2.767E-5 -2.072E-5 25.1 

Vu≠Df-Ds 1.0% 0.2%  0.7% 0.1%  5.7% 0.9%  

Un 1.706E-3 1.724E-3 1.0 -1.222E-12 -1.181E-12 3.3 -1.626E-4 -1.647E-4  1.3 

Un≠Ad-Af      0.1%       0.1%        0.7%       4.1%       0.6%      0.1%  

       P1a -1.210E-4 -1.213E-4 0.2 6.184E-13 6.246E-13  1.0  4.957E-5  4.971E-5  0.3 

       P1d -1.210E-4 -1.213E-4 0.2 6.204E-13 6.248E-13  0.7  4.959E-5  4.971E-5  0.3 

   P1a≠P1d      0.0%     0.0%       0.3%        0.0%       0.0%     0.0%  

       P2 -8.803E-6 -9.156E-6 3.9 -2.378E-13 -2.331E-13  2.0 -5.527E-7 -6.148E-7 10.1 

       PT1 3.667E-7 3.644E-7 0.6 1.534E-14 1.694E-14  9.4 -4.498E-7 -4.733E-7 5.0 

       PT2 3.531E-7 3.535E-7 0.1 1.525E-14 1.689E-14 9.7 -4.507E-7 -4.733E-7 4.8 

       PT3 3.618E-7 3.599E-7 0.5 1.536E-14 1.700E-14 9.6 -4.571E-7 -4.746E-7 4.7 

≠PT1..3 3.7% 3.0%  0.7% 0.6%  1.6% 0.3%  

Var. Helic.             1.201E-7 -1.783E-15             5.073E-8 

Equation 

Unbalance 

-1.977E-5 

1.0 / 0.7 

-1.059E-4 

4.8 / 3.6 
 4.391E-13 

7.3 / 5.3 

7.134E-13 

11.3 / 8.3 
 -1.754E-5 

10.1 / 7.5 

-1.764E-5 

10.3 / 7.5 
 

 
 

Table 4. Statistics of enstrophy transport equation at selected nodes 

 

Term Node 4 Node 5 Node 9 

2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 

Aa -2.269E-2 -2.342E-2 3.1 -3.832E-2 -3.975E-2 3.6 1.333E-3 1.337E-3  0.3 

Ad -2.269E-2 -2.342E-2 3.1 -3.832E-2 -3.975E-2 3.6 1.333E-3 1.337E-3  0.3 

    Aa≠Ad 0.0% 0.0%  0.0% 0.0%  0.0% 0.0%  

Ta -4.128E-5 -4.490E-5 8.1 -1.614E-6 -2.588E-6 37.6 -7.601E-6 -7.684E-6  1.1 

Td -3.905E-5 -4.397E-5 11.2 7.760E-6 1.516E-6 80.5 -7.849E-6 -7.679E-6  2.2 

Ta≠Td 5.4% 2.1%  120.8% 158.6%  3.2% 0.1%  

Df -1.842E-3 -2.006E-3 8.2 -1.454E-3 -1.610E-3 9.7 1.565E-3 1.587E-3  1.4 

Ds 2.584E-2 2.889E-2 10.6 3.064E-2 3.437E-2 10.8 1.943E-3 2.011E-3  3.4 

Vw -2.869E-2 -3.097E-2 7.4 -3.331E-2 -3.607E-2 7.7 -4.402E-4 -4.239E-4  3.7 

Vw≠Df-Dw 3.5% 0.2%  3.7% 0.3%        14.1% 0.0%  

Un -2.084E-2 -2.140E-2 2.6 -3.685E-2 -3.811E-2 3.3 -2.316E-4 -2.533E-4  8.6 

Un≠Ad-Df      0.0%      0.1%        0.0%       0.1%       0.2%      1.3%  

         P1 1.498E-4 1.624E-4 7.8  2.008E-4 2.254E-4 10.9 -1.061E-5 -1.047E-5  1.4 

         P2 4.771E-3 4.929E-3 3.2 -4.000E-4 -4.207E-4  4.9  1.370E-3  1.368E-3  0.1 

         P3 5.262E-3 5.244E-4 0.3 -5.986E-3 -6.151E-3  2.7  2.444E-4  2.559E-4  4.5 

         PT 3.706E-6 4.966E-6 25.4 1.089E-4 1.185E-4 8.1 -1.392E-6 -1.593E-6 12.6 

Var. Enstr.            -2.167E-5                4.434E-5              8.809E-7 

Equation 

Unbalance 

-1.966E-4 

0.8 / 0.6 

2.143E-3 

7.4 / 5.7 
 2.541E-4 

0.7 / 0.5 

2.914E-3 

7.3 / 5.5 
 7.907E-5 

5.5 / 2.5 

1.206E-4 

6.0 / 3.8 
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     Table 3 refers to helicity. Advective and turbulent transport terms of helicity in advective and divergence forms are 

entirely analogous to energy: Aa = 𝑈𝑗𝜕(𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ) 𝜕𝑥𝑗⁄   , Ad = 𝜕(𝑈𝑗𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ) 𝜕𝑥𝑗⁄  ,  Ta = 𝑢𝑗𝜕(𝑢𝑖𝑤𝑖) 𝜕𝑥𝑗⁄  , Td = 𝜕(𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ) 𝜕𝑥𝑗⁄  .  

     Two forms of the pressure term are Pa = 𝑤𝑗𝜕𝑝̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄  are Pd = 𝜕𝑤𝑗𝑝̅̅ ̅̅ ̅ 𝜕𝑥𝑗⁄ . As shown in Table 3, the differences 

between advective and divergence forms are generally small, except for second order estimate of the pressure term, 

while differences between second and forth order central differencing approximations of those terms are generally 

higher than those of kinetic energy, particularly in node 9. 

     Viscous terms are diffusion Df = 𝜕(𝑤𝑗𝑢𝑖𝑢𝑖/2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄ , dissipation Ds = 𝑅𝑒−1(𝜕𝑢𝑖 𝜕𝑥𝑗⁄ )(𝜕𝑤𝑖 𝜕𝑥𝑗⁄ ) and total viscous 

term Vu = 𝑅𝑒−1[𝑢𝑖(𝜕
2𝑤𝑖) (𝜕𝑥𝑗𝜕𝑥𝑗)⁄ + 𝑤𝑖(𝜕

2𝑢𝑖) (𝜕𝑥𝑗𝜕𝑥𝑗)⁄ ] , which show good consistency between themselves, as 

measured by the difference between Vu and Df-Ds (Vu≠Df-Ds). .  

     There is expressive agreement between UNIFAES and both central differencing representations of the advective and 

viscous net flux.  

     There are two production terms related to interaction of fluctuating flow with mean flow; the first term was 

computed in the forms P1a = 𝑊𝑗𝜕 (𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ ) 𝜕𝑥𝑗⁄  and P1d = 𝜕 (𝑢𝑖𝑤𝑖̅̅ ̅̅ ̅̅ 𝑊𝑗) 𝜕𝑥𝑗⁄  ; the second term was computed only as P2 

= 𝑢𝑖𝑢𝑗 ⃐      𝜕𝑊𝑖 𝜕𝑥𝑗⁄ . P1a or P1d is numerically relevant and presents small differences between these two forms and 

between second and forth order discretizations, whilst P2 is minute and show higher relative discrepancies, particularly 

for node 9. Finally there is one turbulent production term, numerically small, which assumes the alternative forms PT1 

= 𝑢𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ , PT2 = 𝑤𝑗 𝜕(𝑢𝑖𝑢𝑖 2⁄ ) 𝜕𝑥𝑗⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   and PT3 = 𝜕(𝑤𝑗𝑢𝑖𝑢𝑖/2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗⁄ , which differ by 3.7% at most; forth order central 

differences shows more coherent results than second order ones.  

    The balance of the helicity transport equation is accurate in node 4 with second order interpolation, but the 

unbalances achieve the order of 10% in nodes 5 and 9.  

     The small unbalance of node 4 with second order could be explained by the discrepancy observed in the difference 

of viscous terms compared to global viscous term. For all other cases, the unbalances are much greater than the 

summation of specific discrepancies would suggest. 

     Table 4 concerns the transport of enstrophy, whose advective and turbulent transport terms are analogous to those of 

kinetic energy, with minute differences between advective or divergence forms or between different discretizations of 

advection term; turbulent transport term presents small relative errors except for node 5, in which the turbulent transport 

term is four orders of magnitude smaller than the dominant terms.  

     The viscous terms Vw = 𝑅𝑒−1 𝑤𝑖(𝜕
2𝑤𝑖) (𝜕𝑥𝑗𝜕𝑥𝑗)⁄  is decomposed into diffusion Df = 𝑅𝑒−1 𝜕2(𝑤𝑖𝑤𝑖/2)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝜕𝑥𝑗𝜕𝑥𝑗⁄  

minus dissipation Dw = 𝑅𝑒−1(𝜕𝑤𝑖 𝜕𝑥𝑗⁄ )(𝜕𝑤𝑖 𝜕𝑥𝑗⁄ ). Analogous to previous cases, the consistency of the relation 

Vw=Df-Dw is very good using the forth order interpolation, buy is poorer using second order, particularly for node 9. 

The results of UNIFAES match the combined advective-viscous results with either second and forth order central 

differencing.  

     There are three production terms relative to interactions between fluctuating and mean flows, P1= 𝑤𝑖𝑢𝑗 ⃐       𝜕𝑊𝑖 𝜕𝑥𝑗⁄   , 

P2=  𝑤𝑖𝑤𝑗̅̅ ̅̅ ̅̅ 𝑆𝑖𝑗 ,  and P3= 𝑤𝑖𝑠𝑖𝑗̅̅ ̅̅ ̅̅ 𝑊𝑗 , and one production term due to fluctuating flow,  PT= 𝑤𝑖𝑤𝑗𝑠𝑖𝑗̅̅ ̅̅ ̅̅ ̅̅ ̅ .  P2  and  P3 are 

numerically relevant, P1 is predictably small because the unperturbed main flow presents no vorticity derivative, the 

fluctuating production PT is also small. The error of these terms can not be evaluated by comparison with alternative 

forms, comparisons between second and forth order discretizations indicate the numerically important term P3 to 

present great errors in nodes 4 and 9.    

    Since the mesh could not be refined significantly more, a mesh refinement study was performed using coarser grids, 

with meshes 120x24x23 and 160x32x32, as show in Tables 6 to 8 for node 4. Prior to that, Table 5 gives a global 

appreciation of the evolution of turbulence properties with refinement, presenting kinetic energy, helicity, enstrophy and  

the Reynolds stress tensor normalized by energy. Evolution is not equal for properties and for nodes. Kinetic energy 

increases with refinement for nodes 4 and 5 but oscillates for node 9; helicity oscillates in nodes 4 and 9 and decrease in 

node 5; enstrophy increases with refinement for node 4 but oscillates for nodes 5 and 9; normalized Reynolds stress 

components may increase, decrease or oscillate. Occurrence of oscillations implies that necessarily the sample of data is 

not fully determined by the smallest order term of the error; at least the rougher refinement is surely affected by higher 

order terms. The evolution between the two more refined results is more likely to reveal asymptotic tendencies.  

     Tables 6 to 8 consider the terms of kinetic energy, helicity and enstrophy transport equations for the meshes 

120x24x24 , 160x32x32 and 240x48x48, for node 4 only. With one exception, the discrepancies, either between 

different orders of interpolation or between different algebraic forms, decrease with refinement; the exception is the 

difference between second and forth order discretizations of the advective form of the turbulent advection term of the 

transport of kinetic energy, in which the intermediate mesh presents the smallest error; this affects a term of minor 

quantitative relevance. The unbalances appear to show a general tendency of decrease with refinement, with some 

exceptions or irregularities. Considering the balances to depend on several terms, somewhat erratic evolution with 

refinement can be understood. 
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Table 5 – Kinetic energy and normalized Reynolds tensor in node 4 for varying mesh refinement 

 

Node      Property            120 x 24 x 24               160 x 32 x 32                240 x 48 x 48   

 

                             

4 

 

Kinetic energy                 5.474E-5                       5.454E-5                      5.201E-5       

Helicity               - 1.515E- 3                                -1.605E-3                     -1.588E-3       

Enstrophy                 1.573E-2                  1.717E-2                      1.731E-2       

Normalized 

Reynolds 

tensor 

0.805 0.643 0.111 0.788 0.637 0.000 0.773 0.632 0.011 

0.643 0.726 0.324 0.637 0.720 0.326 0.632 0.720 0.330 

0.111 0.324 0.469 0.000 0.326 0.492 0.011 0.330 0.508 

 

                  

5 

Kinetic energy               6.968E-5                      6.773E-5                       6.355E-5      

Helicity               3.684E-11                      2.325E-11                       6.780E-12       

Enstrophy               1.939E-2                  2.040E-2                       2.002E-2       

Normalized 

Reynolds 

tensor 

0.826 0.837 0.000 0.808 0.839 0.000 0.791 0.838 0.000 

0.837 1.174 0.000 0.839 1.192 0.000 0.838 1.209 0.000 

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

               

9 

Kinetic energy               1.806E-5                     1.836E-5                       1.808E-5       

Helicity               3.154E-4                      3.267E-4                       3.260E-4       

Enstrophy               2.070E-3                2.134E-3                       2.126E-3       

Normalized 

Reynolds 

tensor 

  0.293 -0.151 -0.406   0.293 -0.126 -0.396  0.293 -0.110 -0.387 

-0.151   1.043   0.521 -0.126   1.043  0.528 -0.110  1.045   0.532 

-0.406   0.521   0.664 -0.396   0.528  0.664 -0.387  0.532   0.662 

 

 

Table 6. Statistics of kinetic energy transport equation for node 4 with varying refinements 

 

Term Mesh  120 x 24 x 24 Mesh  160 x 32 x 32 Mesh  240 x 48 x 48 

2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 

Aa  -8.020E-5     -8.013E-5     0.1 -8.252E-5     -8.248E-5     0.0 -8.129E-5 -8.127E-5 0.0 

Ad -8.021E-5     -8.013E-5     0.1 -8.252E-5     -8.248E-5     0.0 -8.129E-5 -8.127E-5 0.0 

      Aa≠Ad 0.0% 0.0%  0.0% 0.0%  0.0% 0.0%  

Ta -2.017E-8     -1.912E-8     5.2 -2.877E-8     -2.845E-8     1.1 -3.562E-8 -3.608E-8 1.3 

Td -1.998E-8 -2.150E-8 7.1 -2.782E-8 -2.904E-8 4.2 -3.486E-8 -3.606E-8 3.3 

Ta≠Td 1.0%     11.1%  3.3% 2.0%  2.1% 0.1%  

         Pa -1.604E-5     -1.685E-5       4.8 -1.400E-5     -1.446E-5       3.2 -1.197E-5 -1.217E-5   1.6 

         Pd -1.547E-5 -1.678E-5   7.8 -1.399E-5 -1.444E-5       3.1 -1.207E-5 -1.215E-5   0.7 

     Pa≠Pd      3.6%      0.4%       0.1%       0.1%      0.8%      0.2%  

Df -6.963E-6     -7.271E-6       4.2 -6.706E-6     -6.867E-6     2.3 -6.054E-6 -6.114E-6 1.0 

Du 5.061E-5 5.860E-5 13.6  5.495E-5 6.013E-5 8.6   5.531E-5   5.770E-5 0.7 

Vu -6.409E-5     -6.731E-5     4.8 -6.553E-5     -6.748E-5     2.9 -6.305E-5 -6.390E-5 1.3 

Vu≠Df-Du 10.2%       2.1%  5.9% 0.7%  2.7% 0.1%  

        Ts -7.834E-6     -9.552E-6     18.0 -8.420E-6     -9.545E-6     11.8 -8.226E-6 -8.725E-6 5.7 

Ds   4.877E-5 5.586E-5 12.7 5.267E-5 5.729E-5    8.1   5.292E-5   5.506E-5 3.9 

Vs -5.457E-5 -6.448E-5     15.4 -5.971E-5 -6.648E-5     10.2 -6.049E-5 -6.371E-5 5.1 

Vs≠Ts-Ds 3.7% 1.4%  2.3% 0.5%  0.1% 0.1%  

Vs≠Vu 14.9% 4.2%  9.7% 1.5%  4.1% 0.3%  

          Un                 -7.316E-5                      -7.577E-5                 -7.521E-5 

Un≠Ad-Df      0.1%       0.4%              0.0%       0.0%        0.0%        0.1%  

PU 3.575E-5     3.580E-5     0.1 -3.532E-5 -3.535E-5 0.1 -3.341E-5 -3.343E-5 0.1 

PS 3.575E-5     3.580E-5     0.1 -3.532E-5 -3.535E-5 0.1 -3.341E-5 -3.343E-5 0.1 

PU≠PS 0.0% 0.0%  0.0% 0.0%  0.0% 0.0%  

Var. KinEn.                  5.489E-7                  3.890E-7              6.971E-8 

Eq. (20) 

Unbalance 

-2.931E-6   

3.7 / 2.9   

4.672E-6  

5.8 / 4.4    
 4.357E-7 

0.5 / 0.4     

5.380E-6 

6.5 / 4.9     
 1.492E-6   

   1.8 / 1.4   

3.770E-6 

4.6 / 3.6     
 

Eq. (21) 

Unbalance 

-3.898E-6 

4.9 / 3.8     

4.214E-6 

5.3 / 4.0 
 -1.332E-7  

0.2 / 0.2    

5.220E-6 

6.3 / 4.8 
 1.272E-6   

1.6 / 1.2   

3.746E-6 

4.6 / 3.6     
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Table 7. Statistics of helicity transport equation for node 4 with varying refinements 

 

 Mesh  120 x 24 x 24 Mesh  160 x 32 x 32 Mesh  240 x 48 x 48 

2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 

Aa 1.728E-3     1.824E-3     5.3 1.898E-3     1.961E-3     3.2 1.955E-3 1.986E-3 1.6 

Ad 1.728E-3     1.824E-3     5.3 1.898E-3     1.961E-3     3.2 1.955E-3 1.986E-3 1.6 

   Aa≠Ad 0.0% 0.0% 
 

0.0% 0.0%  0.0% 0.0%  

Ta 9.521E-7     1.146E-6     16.9 1.283E-6     1.432E-6     10.4 1.538E-6 1.631E-6 5.7 

Td 8.641E-7 1.139E-6 24.1 1.170E-6 1.389E-6 15.8 1.465E-6 1.604E-6 8.7 

Ta≠Td 9.2% 0.4%  8.8% 3.0%  4.7% 1.7%  

        Pa 2.859E-4     3.150E-4       9.2 2.671E-4      2.844E-4       6.1 2.400E-4 2.473E-4 3.0 

        Pd 2.886E-4 3.227E-4   10.6 2.703E-4  2.874E-4   5.9 2.419E-4 2.479E-4 2.4 

   Pa≠Pd      1.0%     2.4%        1.2%       1.0%       0.8%       0.2%  

 Df 2.389E-4     2.796E-4     14.6 2.573E-4     2.846E-4     9.6 2.506E-4 2.631E-4 4.8 

  Ds -1.755E-3 -2.087E-3 15.9 -2.007E-3 -2.238E-3 10.3 -2.078E-3 -2.189E-3 5.1 

Vu 2.090E-3     2.427E-3     13.9 2.320E-3     2.544E-3     8.8 2.352E-3 2.457E-3 4.3 

Vu≠Df-Ds 4.6% 2.5%  2.4% 0.8%  1.0% 0.2%  

Un  1.493E-3     1.552E-3     13.9 1.642E-3     1.680E-3     2.3 1.706E-3 1.724E-3 1.0 

Un≠Ad-Af      0.3%      0.5%        0.1%      0.2%       0.1%       0.1%  

        P1a -1.378E-4     -1.390E-4      0.9 -1.311E-4     -1.317E-4       0.5 -1.210E-4 -1.213E-4 0.2 

        P1d -1.377E-4     -1.390E-4      0.9 -1.310E-4     -1.317E-4       0.5 -1.210E-4 -1.213E-4 0.2 

   P1a≠P1d      0.1%     0.0%       0.1%     0.0%       0.0%     0.0%  

       P2 -7.896E-6 -9.010E-6 12.4 -8.744E-6 -9.499E-6  7.9 -8.803E-6 -9.156E-6 3.9 

       PT1 2.260E-7     2.818E-7     19.8 3.400E-7     3.628E-7      6.3 3.667E-7 3.644E-7 0.6 

       PT2 2.535E-7     2.512E-7      0.9 3.309E-7     3.287E-7       0.7 3.531E-7 3.535E-7 0.1 

       PT3 3.100E-7 3.521E-7 12.0 3.591E-7 3.648E-7   1.6 3.618E-7 3.599E-7 0.5 

≠PT123 27.1% 28.7%  7.9% 9.9%  3.7% 3.0%  

Var. Helic.                   4.419E-7                    4.957E-7                   1.201E-7 

Equation 

Unbalance 

1.500E-4 

8.5 / 6.0     

-9.639E-5  

4.6 / 3.4    
 2.402E-5  

1.2 / 0.9    

-1.540E-4 

6.9 / 5.1     
 -1.977E-5 

1.0 / 0.7 

-1.059E-4 

4.8 / 3.6 
 

 

Table 8. Statistics of enstrophy transport equation for node 4 with varying refinements 

 

 Mesh  120 x 24 x 24 Mesh  160 x 32 x 32 Mesh  240 x 48 x 48 

2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 2
nd

 order 4
th

 order ≠% 

Aa -2.009E-2     -2.251E-2     10.8 -2.206E-2     -2.361E-2     6.6 -2.269E-2 -2.342E-2 3.1 

Ad -2.009E-2     -2.251E-2     10.8 -2.206E-2     -2.361E-2     6.6 -2.269E-2 -2.342E-2 3.1 

    Aa≠Ad 0.0% 0.0%  0.0% 0.0%  0.0% 0.0%  

Ta -2.386E-5     -3.156E-5     24.4 -3.504E-5     -4.155E-5     15.7 -4.128E-5 -4.490E-5 8.1 

Td -2.037E-5 -2.960E-5 31.2 -3.125E-5 -3.957E-5 21.0 -3.905E-5 -4.397E-5 11.2 

Ta≠Td 14.6% 6.2%  10.8% 4.8%  5.4% 2.1%  

Df -1.572E-3     -2.094E-3     24.9 -1.830E-3     -2.190E-3     16.4 -1.842E-3 -2.006E-3 8.2 

Ds  1.926E-2      2.788E-2     30.9 2.364E-2     2.986E-2     18.4 2.584E-2 2.889E-2 10.6 

Vu -2.386E-2     -3.100E-2     23.0 -2.757E-2     -3.242E-2     15.0  -2.869E-2 -3.097E-2 7.4 

Vu≠Df-Ds 12.7% 3.3%  7.6% 1.1%  3.5% 0.2%  

Un -1.850E-2 -2.041E-2   9.4 -2.022E-2 -2.142E-2 5.6 -2.084E-2 -2.140E-2 2.6 

Un≠Ad-Df       0.1%      0.0%       0.0%      0.0%       0.0%      0.1%  

         P1   1.223E-4       1.611E-4     24.1 1.443E-4     1.712E-4       15.7 1.498E-4 1.624E-4 7.8 

         P2   4.011E-3       4.494E-3     10.7 4.577E-3     4.906E-3       6.7 4.771E-3 4.929E-3 3.2 

         P3   5.772E-3   5.765E-4  0.1 5.666E-3 5.642E-4   0.4 5.262E-4 5.244E-4 0.3 

         PT   1.083E-6   2.575E-6 57.9 2.138E-6 3.905E-6 45.2 3.706E-6 4.966E-6 25.4 

Var. Enstr.                 -1.701E-4                  -1.220E-4                 -2.167E-5 

Equation 

Unbalance 

-3.745E-3 

18.6 / 13.3 

 2.522E-3 

9.0 / 7.0 
 -1.623E-3 

6.9 / 5.0 

3.090E-3 

10.3 / 8.0 
 -1.966E-4 

0.8 / 0.6 

2.143E-3 

7.4 / 5.7 
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        An overall appreciation of the evolution of the transport equations unbalance is provided by table 9, showing the 

mean unbalances of the 18 nodes recorded, relative to the square root of the sum of the squared terms for the thre 

meshes used.  Forth order show smaller mean errors, despite the nodes used in example. With varying rate, all 

unbalances diminish with refinement. 

 

Table 9 – Mean per-cent unbalances among 18 nodes for varying mesh refinement 

 
Transport 
equation 

2nd order 4th order 
Mesh 24 Mesh 32 Mesh 48 Mesh 24 Mesh 32 Mesh 48 

Kin. En. (1st) 16.8 11.1 7.1 9.8 8.4 6.1 
Kin. En. (2nd) 23.2 13.4 7.8 18.8 12.4 6.0 

Helicity 15.3 12.7 12.2 12,6 12.2 12.0 
Enstrophy 20.6 12.1 5.2 13.8 7.2 3.7 

 
5.2. Velocity-vorticity statistical dynamic equation 

 

     Finally, attention is turned to the statistical dynamic equation for the velocity-vorticity tensor, Eq. (26). Table 10 

presents the fluctuating scalar properties kinetic energy, helicity and enstrophy, and the velocity-vorticity tensor for the 

selected nodes with mesh 240x48x48, comparing the values obtained by direct measurement of the tensor with those 

obtained via the statistical dynamic equation. Calculations were performed for time increment 0.0125, which was used 

in previous calculations, and a time increment four times smaller, 0.003125. The discrepancies between statistical 

dynamic estimates and direct measurements are enormous; results of the statistical dynamic equations are often one 

order of magnitude smaller than the value directly measured. The reduction in the time step affected statistical dynamic 

equations estimates as much as the values directly measured for the tensor and for the scalar properties: both show  

about 10% decrease with the smaller time increment. 

       Unless better approximations can be found by further research, this rough order of magnitude is the unique 

information that can be obtained. This is not useless information, for indicating the most relevant terms to be considered 

by means of other estimation method. This is illustrated in Table 11, showing the decomposition of the velocity-

vorticity tensor for node 4 by the statistical dynamic method.  

     The most numerically relevant term is 
1

𝑅𝑒
𝑢𝑖 ∫

𝜕2𝑤𝑘

𝜕𝑥𝑗𝜕𝑥𝑗

𝑡

𝑜
𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
, which achieves order 10

-4
. Then follow terms  

𝑆𝑘𝑗𝑢𝑖 ∫ 𝑤𝑗
𝑡

𝑜
𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 ,  𝑊𝑗𝑢𝑖 ∫ 𝑠𝑘𝑗𝑑𝑡

𝑡

𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
  and 𝑢𝑖 ∫ [𝜕(𝑤𝑘𝑢𝑗 − 𝑤𝑗𝑢𝑘) 𝜕𝑥𝑗⁄ ]𝑑𝑡

𝑡

0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
, which achieve order 10

-5
. Checks of precision are  

 

Table 10 – Fluctuating scalar properties and velocity-vorticity tensor using different time steps for some nodes 

 

 

Node 

 

Time 

increment 

Energy 

Helicity             

Enstrophy 

Velocity – vorticity tensor 

Measured directly Statistical dynamic equation 

 

 

4 

 

 

 

1.25E-2 

5.201E-5 -5.4E-4 -3.4E-4 6.3E-5 -6.0E-5 -5.9E-5 2.7E-4 

-1.588E-3 -3.7E-4 -2.5E-4 -4.5E-4 -6.0E-5 -6.7E-5 1.7E-4 

1.731E-2 1.0E-4 3.0E-5 -7.9E-4 -1.8E-5 -3.1E-5 -7.3E-5 

 

3.125E-3 

4.690E-5 -4.8E-4 -3.1E-4 5.2E-5 -5.4E-5 -5.2E-5 2.4E-4 

-1.426E-3 -3.3E-4 -2.3E-4 -4.1E-4 -5.4E-5 -6.0E-5 1.6E-4 

1.552E-2 9.1E-5 2.7E-5 -7.1E-4 -1.7E-5 -2.8E-5 -6.2E-5 

 

 

5 

 

1.25E-2 

6.355E-5 1.3E-12 9.1E-13 1.8E-4 -6.2E-14 3.1E-13 -1.8E-5 

6.780E-12 1.2E-12 1.3E-12 -7.0E-4 -2.6E-13 2.2E-13 4.1E-4 

2.002E-2 7.1E-22 -1.6E-21 4.2E-12 9.4E-22 4.7E-22 3.0E-13 

 

3.125E-3 

5.747E-5 1.1E-12 7.7E-13 1.6E-4 -4.4E-14 2.6E-13 4.2E-4 

5.797E-12 9.9E-13 1.1E-12 -6.3E-4 -2.1E-13 1.8E-13 3.7E-4 

1.797E-2 6.2E-22 -1.3E-21 3.6E-12 7.6E-22 3.9E-22 2.3E-13 

 

 

9 

 

1.25E-2 

1.808E-5 7.9E-5 2.7E-5 -6.1E-5 -2.6E-5 -2.1E-6 -3.0E-6 

3.260E-4 7.4E-5 1.6E-4 3.6E-5 4.0E-6 -1.3E-5 -2.3E-5 

2.126E-3 -6.6E-4 3.0E-5 8.6E-5 3.3E-5 -2.6E-6 -5.4E-6 

 

3.125E-3 

1.674E-5 7.3E-5 2.5E-5 -5.7E-5 -2.4E-5 -2.2E-6 -3.0E-6 

3.023E-4 6.9E-5 1.5E-4 3.3E-5 4.7E-6 -1.2E-5 -2.1E-5 

1.962E-3 -6.0E-5 2.8E-5 8.0E-5 3.0E-5 -2.1E-6 -4.6E-6 
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Table 11 Terms of velocity-vorticity statistical dynamic equation for node 4 

 

𝜕𝑊𝑘

𝜕𝑥𝑗

𝑢𝑖 ∫ 𝑢𝑗

𝑡

0

𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑆𝑘𝑗𝑢𝑖 ∫ 𝑤𝑗

𝑡

𝑜

𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑊𝑗𝑢𝑖 ∫ 𝑠𝑘𝑗𝑑𝑡
𝑡

𝑜

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

 -4.3E-6   3.1E-7   -4.7E-6   8.7E-6   2.4E-5   -3.8E-7   5.7E-6   -4.2E-5   7.7E-6   

 4.7E-7   4.6E-8   -4.8E-7   3.5E-5   6.43E-5 -1.2E-7   3.8E-5   -6.3E-5   5.8E-6   

 6.3E-6 3.2E-7 5.2E-6 4.4E-5 7.0E-5  3.0E-7 5.2E-5 -4.5E-5 -6.7E-7 

𝑢𝑖 ∫
𝜕(𝑤𝑘𝑢𝑗 − 𝑤𝑗𝑢𝑘)

𝜕𝑥𝑗

𝑑𝑡
𝑡

0

 
1

𝑅𝑒
𝑢𝑖 ∫

𝜕2𝑤𝑘

𝜕𝑥𝑗𝜕𝑥𝑗

𝑡

𝑜

𝑑𝑡
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 𝑢𝑖 ∫ 𝑑𝑡
𝑡

0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 
𝜕(𝑤𝑘𝑢𝑗 − 𝑤𝑗𝑢𝑘)

𝜕𝑥𝑗

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

-2.6E-6   2.9E-7   -2.7E-7   -8.0E-5   -4.1E-5   2.6E-6   -1.5E-6   2.2E-7   -1.3E-7  

-9.8E-6   1.2E-6   -5.2E-7   -1.4E-4   -6.8E-5    1.7E-4   -5.0E-6  7.4E-7   -4.5E-7  

 1.2E-5 1.6E-6 -4.1E-7  1.1E-4 -5.5E-5 -6.8E-5 -6.0E-6 8.9E-7 -5.4E-7 

 

included. The correlation  𝑢𝑖 ∫ 𝑢𝑗
𝑡

0
𝑑𝑡

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 of the first tensor is proved to be nil for 𝑖 = 𝑗 (Figueiredo, 2016, 2018b); indeed 

the whole tensor values are small compared to the other terms. The correlation 𝑢𝑖 ∫ 𝑑𝑡
𝑡

0

̅̅ ̅̅ ̅̅ ̅̅ ̅
 that appears in the last tensor, 

which is neglected in the statistical dynamic equation since it is also nil for sufficiently high time interval, was 

introduced to check its possible influence; indeed its values are small. 

 

6. CONCLUSION    

    The evaluation of the terms of the transport equations for kinetic energy, helicity and enstrophy have been 

demonstrated to converge with space and time refinements. The present estimates of the statistical dynamic equation, 

provided very poor quantitative representation of the velocity-vorticity tensor, which may be useful for indicating the 

most important terms, but can not be seen as a method of calibration. Better estimates are expected by further matching 

the Runge-Kutta integration of the Navier-Stokes solver and the Simpson integration of the statistics processing. 

     In the present Cartesian semi-staggered mesh, increasing the order of velocity and vorticity derivatives was simple, 

but increasing the order of pressure derivatives was more complex due to the staggered position of pressure with respect 

to the velocities. No such difficulty would exist for collocated meshes. In fully staggered mesh, conversion of all 

velocity data to the pressure nodes employs only one-dimensional interpolations; in principle, a third order polynomial 

interpolation analogous to Eq. (36) can be used, providing forth order approximation of all velocity components at the 

pressure location. Upon such collocated field, forth order interpolations of Eqs. (33) to (35) can be employed.  

      The program for evaluation of the terms of the transport equations of the scalars is ready for the subsequent work, 

translation to a language suitable for multiprocessing, such as Python for application to effectively turbulent phenomena 

via DNS or LES computations. Interest on engaging in this research was manifested by professors Aristeu Silveira 

Neto, from UFU and Rogério Gonçalves dos Santos, from UNICAMP (private communications); both have access to 

computational clusters and experience with parallel computation. Professor Silveira Neto employs program MFSim, 

developed collectively at UFU, which is suitable for RANS, URANS and LES computations, using Cartesian staggered 

meshes and fractional step coupling of pressure and continuity. Professor Santos is engaged in the developments of two 

programs for multiprocessors computation: the referred Finite Volume NavSto program for incompressible flow, and a 

high order Finite Difference program for compressible flows, which treats the incompressible flow as a limiting case.  

     Participation of other researchers is welcome as extremely important for mutual checking and for enlarging the range 

of situations analyzed, all community is invited to participate in the adventure of creating the kinetic energy – helicity 

turbulence model. 

  

7.  REFERENCES  

 

Allen, D.N.G., Sauthwell, R.V., 1955. “Relaxation Methods Applied to Determine the Motion, in Two Dimensions, of a 

     Viscous Flow Pasta Fixed Cylinder”. Quarterly J. Mechanics and Applied Mathematics, v.8, 129-145. 

Davidson, P.A., 2004. Turbulence - An Introduction for Scientists and Engineers, Oxford University Press, Oxford 

Llagostera, J. e Figueiredo, J. R., 2000a. “Numerical study on mixed convection in a horizontal flow past a square 

     cavity using UNIFAES scheme” J. Braz. Society Mech. Sciences, v.22, 4, 583-597.  

Llagostera, J. e Figueiredo, J. R., 2000b. “Application of the UNIFAES discretization scheme to mixed convection in a  

     porous layer with a cavity, using the Darcy model”. J. Porous Media, v.3, 2,  16  

Figueiredo, J. R., 1997. “A unified finite-volume finite-differencing exponential-type scheme for the convective- 

     diffusive fluid transport equations”. Journal of the Brazilian Society of Mechanical Engineers, v.19, n.3, 371-391  

Figueiredo, J. R. e Llagostera, J., 1999. “Comparative study of the unified finite approach exponential-type scheme  



Figueiredo, J.R. 
On the Calibration of the Kinetic Energy – Helicity Turbulence Model 
 

     (UNIFAES) and its application to natural convection in a porous cavity”, Numerical Heat Transfer, B, v.35, 3, 347- 

     367 

Figueiredo, J. R. e Oliveira, K. P. M., 2009a. “Comparative study of UNIFAES and other finite-volume schemes for the 

     discretization of advective and viscous fluxes in incompressible Navier-Stokes equations, using various mesh  

     structures”. Numerical Heat Transfer, B, v.55, 5, 406-434  

Figueiredo, J. R. e Oliveira, K. P. M., 2009b. “Comparative study of the accuracy of the fundamental mesh structures  

     for the numerical solution of incompressible Navier-Stokes equations in the two-dimensional cavity problem”.  

     Numerical Heat Transfer, B, v.55, 5, 406-434  

Figueiredo, J.R. 2016 “A dynamic statistical equation based model for the turbulent transport of kinetic energy in shear  

     layes”. Proceedings of Spring School in Transition and Turbulence, EPTT 2016 S. José dos Campos, SP, Brazil.  

Figueiredo,  J.R. 2018a “Towards a kinetic energy – helicity turbulence model”. Proceedings of Spring School in  

     Transition and Turbulence EPTT 2018, Uberlandia, MG, Brasil. 

Figueiredo, J.R. 2018b “A statistical dynamic model for the turbulent transport of kinetic energy in shear layers”. J. 

      Aerosp. Technol. Manag. 10:e2518, doi:10.5028/jatm.v10.915  

Karki, K., Mongia, H., Patankar, S.V., 1989. “Solution of three-dimensional flow problems using a flux-spline method.” 

      27
th

 Aerospace Science Meeting, AIAA. 

Nascimento, A.H.G., 2019. Numerical Solution of Incompressible Flows in Plane Channels with Gradual Expansions 

     (in Portuguese) M.Sc. Thesis, Unicamp, Campinas. 

Nascimento, A.H.G., Rodrigues, G.S., Figueiredo, J.R. 2020. A semi-staggered finite volume approach applied to two-  

     and three- dimensional flow in channels with gradual expansions. Submitted to the Journal of Computational  

     Physics. 

Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow, Mc-Graw Hill Inc. 

Pope, S.B., 2000, Turbulent Flows, Cambridge University Press, Cambridge, pp.325-327 

Prakash, C. 1984. “Application of the locally analytic differencing scheme to some test problems” Numerical Heat  

     Transfer, v.7, n.2, 165-182 

Rathby, G., Torrance, K. 1974, “Upstream-weighted differencing schemes and their application to elliptic problems  

     involving fluid flow.” Computers and Fluids, v.2, n.2, 191-206 

Rhie, C.M., Chow, W.L., 1983. “Numerical study of the Turbulent flow past an airfoil with trailing edge separation.” 

      AIAA Jounal, v.21, n.11, 1525-1532 

Rodrigues, G.S., 2019. Performance of Finite Volume Discretization Schemes in Advective-Diffusive Transport  

     Equation (in Portuguese) M.Sc. Thesis, Unicamp, Campinas. 

Rodrigues, G.S.,  Nascimento, A. H., Figueiredo, J. R., 2020. Assessment of seven finite volume schemes for linear and   

     nonlinear advective-diffusive equation. Submitted to International Journal for Numerical Methods in Fluids 

Santos, R. G.; Figueiredo, J. R., 2011. “Numerical simulation study in a three-dimensional backward-facing step flow”,  

     21
st
 International Congress of Mechanical Engineering, Buenos Aires, Argentina. 

Spalding, D.B., 1972. “A novel finite difference formulation for differential expressions involving both first and second  

     derivatives.” International Journal for Numerical Methods in Engineering, v.4, n.4, 551-559. 

Varejão, L.M.C., 1979. Flux-Spline Method for Heat and Momentum Transfer, Ph. D Thesis, University of Minnesota,  

     Mineapolis 

Wong, H.H.; Raithby, G.D., 1979, “Improved finite-difference methods based on a critical evaluation of the 

     approximation errors.” Numerical Heat Transfer, v.2, n.2, 139-163 

Tennekes, H. ; Lumley, J.L., 1972, A First Course in Turbulence, MIT Press, Cambridge, Massachusetts 

 

7. RESPONSIBILITY NOTICE 

 

The author is the only responsible for the printed material included in this paper. 

 

 

 

 

 


