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Abstract. This study is dedicated to the implementation, verification and measurement of execution speed, using the
method of manufactured solutions, of a new temporal integration method of the implicit-explicit kind, the Stepwise-IMEX
or SIMEX, in the Aeroacoustics, Transition and Turbulence Group’s (GATT) Direct Numerical Simulation (DNS) code.
In simulations where Ma ≈ 0.1, or less, SIMEX should be able to reduce the explicit 4th order Runge-Kutta’s (ERK)
execution time, which is currently used. A pilot program was created, in Python, with the Burgers’ 1D equation, using
4th order compact finite differences, to test from 2nd to 5th order SIMEX methods and the mentioned explicit method.
Indeed, in these preliminary tests, SIMEX proved to be faster than ERK only with linear Burgers’ equation and only after
a certain stiffness level. However, there are indications that some characteristics of the DNS, such as the y axis’ greater
refinement, not found in the pilot are favorable to SIMEX. Both the decomposition of the ODE and the iterative method
for implicit systems and the chosen tableaus pair have a huge impact on the SIMEX efficiency and will be targeted in next
stage of DNS code implementation.
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1. INTRODUCTION

The current group’s (Turbulence, Transition and Aeroacoustic Group - GATT) Direct Numerical Simulation (DNS)
code is a reorganization of the previous versions, (Mathias, 2017). Details about its use and validation can be found at
(Silva et al., 2010; Bergamo, 2014; Bergamo et al., 2015; Martinez and Medeiros, 2016; Martinez, 2016; Mathias, 2017).
In this code the acoustic phenomena are always resolved which allows aeroacoustic analysis for every subsonic Mach
number. At low Mach numbers, say 0 < Ma ≈ 0.1, the velocity fields are much slower then the acoustic waves, which in
pratice makes the system stiff, thus imposing time-step restrictions for the simulations with explicit integration methods.

Fully implicit methods build up complexity and CPU cost proportionally to the integrated equation’s complexity. So it
is quite clear that Navier-Stokes equations are not very well suited for these kind of methods at first glance. But, because
different terms contribute distinctly to the stiffness, implicit-explicit methods can offer some advantage. This class of
methods decomposes the equation in two parts, the part with the stiff terms are integrated implicitly and the remaining
part is integrated explicitly. Bigger stable time-steps may reduce execution time as consequence of this approach. The
trade-off to be managed is the necessity of keeping the implicit equation simple to solve against the possibility of using
bigger time-steps.

The use of implicit and explicit methods in an ODE system dates back to the 1970s. Early studies are (Hofer, 1976),
(Crouzeix, 1980) and (Cooper and Sayfy, 1980). A comprehensive review can be found in (Christopher A. Kennedy,
2001; Kennedy and Carpenter, 2003). IMEX methods have been studied with a variety of time-stepping schemes. Here
we use singly-diagonally implicit Runge-Kutta with explicit first stage (ESDIRK) schemes (Ascher et al., 1997; Ghosh
and Constantinescu, 2016; Christopher A. Kennedy, 2018; Wang et al., 2015). A comprehensive review of ESDIRK
schemes can be found in (Christopher A. Kennedy, 2016).

Recently, IMEX methods have been used in compressible fluids simulations such as in atmospheric studies, where
the stiffness is associated with terms that generates acoustic waves (Bispen et al., 2017; Zhang et al., 2016b; Colavolpe
et al., 2017; Durran and Blossey, 2012; David J. Gardner et al., 2018; Ghosh and Constantinescu, 2016; Restelli and
Giraldo, 2009; Christopher J. Vogl et al., 2019; Weller et al., 2013; Zhang et al., 2016a), which imposes strong time-step
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restrictions and are not relevant for climate phenomena for example.
Within this scenario, SIMEX is a modification of the IMEX method. The advantage in this new class of methods is

the absence of the need to iterate the implicit equation until a really low residue level. The residue that remains from
the implicit equation is integrated along with the explicit part of the decomposition, thus keeping the method’s precision.
Due to the possibility of using less iterations, SIMEX has the potential to obtain precise solutions, as in IMEX, but faster
(Rodrigues, 2017).

In this work SIMEX method is applied to Burgers’ 1D equation as a preliminary test and the results are compared with
the ones obtained from the classical 4th order explicit Runge-Kutta. The spatial discretization is done by a compact finite
difference method (Lele, 1992), as in the GATT’s DNS. Solutions quality and method’s formal order of convergence are
verified by means of a manufactured solution. All the implementation and data analysis was done in Python. In the next
step of this project SIMEX will be implemented in the GATT’s DNS code which is written in FORTRAN 90.

2. METHODOLOGY

2.1 1D Burgers’ Equation

Burgers’ equation is an advection-diffusion PDE which is often used as a simplification for the Navier-Stokes equation,
it is expressed as follows:

∂u

∂t
+ f(u)

∂u

∂x
= γ

∂2u

∂x2
+ Ψ(x, t) (1)

where γ is a positive real constant, Ψ is a source term and f(u) defines the advection speed, which here assumes two
different profiles in order to get a linear or a non-linear equation. The former one is obtained with f(u) = u and the last
one with a constant profile f(u) = c.

2.2 Manufactured Solutions

In the present work the method of manufactured solutions is used for code verification. It consists of formulating an
analytical solution by adding a source term to the original equation so that the numerical solution can be compared with
the analytical one. For the one-dimensional PDE problem the chosen analytical function is given by:

Uman(x, t) = esin(αx−at). (2)

Where α and a represents the wave number and angular frequency respectively. This solution is chosen so that Uman is
always positive, has infinite derivatives and oscillates in space and time.

The source term Ψ is easily calculated by

Ψ(x, t) = Ut + f(U)Ux − γUxx. (3)

Where the subscript stands for the derivative with respect to that variable and the man subscript was suppressed to
simplify notation.

2.3 Compact Finite Differences

Spatial derivatives are calculated with a spectral-like compact finite differences method described by (Lele, 1992),
where centered stencil is defined as follows:

β(u′i+2 + u′i−2) + α(u′i+1 + u′i−1) + u′i = a
ui+1 − ui−1

2h
+ b

ui+2 − ui−2
4h

+ c
ui+3 − ui−3

6h
, (4)

where h is the mesh spacing. The correspondent modified wavenumber w′ is

ω′(ω) =
a sin(ω) + (b/2) sin(2ω) + (c/3) sin(3ω)

1 + 2α cos(ω) + 2β cos(2ω)
. (5)

Close to the boundaries, the stencil is shifted and coefficients are adjusted accordingly, as an example, the first deriva-
tive at the boundary can be calculated from the following relation:

u′1 + αu′2 =
1

h
(au1 + bu2 + cu3 + du4) (6)

This system may be represented as

Au′ = Bu, (7)
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where A and B are N ×N square matrices with N being the number of grid points. The entries of B are proportional to
h−1.

Its worth mentioning that matrices A and B are narrow band-diagonal matrices. By choosing β = c = 0 in Eq. 4 it
is possible to obtain up to a sixth-order tridiagonal scheme whose coefficients are determined by matching Taylor series.
This work uses a fourth-order tridiagonal scheme with w = 1.8. When necessary, we will formally write

u′ = A−1Bu, (8)

although Eq. 7 is used for computational purposes.

2.4 ESDIRK-IMEX

IMEX is a class of methods that combines an explicit with an implicit integrator and to do so it decomposes the
right-hand-side of the ODE as the sum of two functions

du

dt
= f(t,y) + g(t,y), (9)

where f is the explicit part of the decomposition and g the implicit part. This allows stiff terms to be handled implicitly
while non-stiff terms are placed in the explicit part. For IMEX methods, it is imperative to solve the implicit equation up
to a given precision level in order to avoid introducing errors. This task is done by an iterative method that will iterate
until de precision requirement is fulfilled or the maximum iterations number is reached, here we call this a Solver.

Explicit-first-stage singly diagonally implicit Runge-Kutta (ESDIRK) is a particular case of the DIRK class of implicit
methods, for which an extensive review can be found in (Christopher A. Kennedy, 2016). The ESDIRK-IMEX implicit
equation for the ith stage has the following form

ỹi − hγg(tn + cih, ỹi) = yn + h

i−1∑
j=1

(ai,jkj + ãi,jk̃j), i = 2, . . . , ν. (10)

Where yn is the current approximation for y(tn), h is the step size and γ is the tableau diagonal’s value. ỹi is the current
stage approximation, which is obtained by a Solver S within some predefined residue tolerance. Finally, the next step
approximation yn+1 is computed as follows:

yn+1 = yn + h

ν∑
j=1

bj(kj + k̃j). (11)

2.5 IMEX Decompositions

Having in mind that the advective term is the stiffness source to this problem, it should now be clear that this is the one
to be placed in the implicit part of the decomposition. To avoid solving a non-linear system of equations, a linarisation of
the advective term can be made. Here 4 decompositions are presented, 3 for the non-linear burgers’ equation and 1 for the
linear case.

Table 1: IMEX Decompositions for the linear and non-linear burgers’ equation
g(u′, u, x, t) f(u′′, u′, u, x, t)

Decomposition 1 −u∂u∂x γ ∂
2u
∂x2 + Ψ(x, t)

Decomposition 2 −c∂u∂x −(u− c)∂u∂x + γ ∂
2u
∂x2 + Ψ(x, t)

Decomposition 3 −u0 ∂u∂x −(u− u0)∂u∂x + γ ∂
2u
∂x2 + Ψ(x, t)

Decomposition 4 −c∂u∂x γ ∂
2u
∂x2 + Ψ(x, t)

Here the independent variables are the space x and temporal t dimensions and u ≡ u(x, t) is the dependent variable.
In this work, g and f are functions of u, its first and second derivatives and also x and t.

2.6 ESDIRK-Stepwise-IMEX

SIMEX (Rodrigues, 2017) is a new implicit-explicit integration method that can be seen as an improved IMEX, where
a within-step decomposition adjustment is proposed with the intent of removing the need of getting precise solutions
for the implicit equations. This new decomposition is named Residual Balanced Decomposition (RBD) and it is directly
related to the traditional IMEX decomposition, Eq. 12. The job once done by a Solver is now done by a implicit step filter,
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or Filter for short, which is defined as a predefined successive iterations of one or more iterative methods. For example,
one can define a Filter as 2 Newton iterations. Thus, solvers and filters are distinguished because neither precision nor
convergence are required from a filter.

dy

dt
= f(t,y) + g(t,y) = frbd(t,y) + grbd(t,y). (12)

The implicit equation that has to be solved at each SIMEX implicit step is exactly the same as the one for IMEX, Eq.
10. After that, the remaining residue has to be managed properly and that’s what motivates the following definition for
the RBD decomposition:

grbd(t,y) =
y − yn −F−1(y − yn, t)

hγ
. (13)

Where F−1 is the inverse filter F and,

frbd(t,y) = f(t,y) + g(t,y)− grbd(t,y). (14)

Now the question that arises is how to calculate the inverse filter, but even when possible it is certainly not a quick job.
Altough its existence being important for the theoretical justification of the method, fortunately, there’s a practical way to
evaluate grbd and frbd without the need of computing F−1. So, let the value returned by the filter, Eq. 15, be the exact
answer for the implicit equation, Eq. 10, when the function g is replaced by grbd, Eq. 16. Mathematically,

ỹi,rbd = F(rhs, t) (15)

such that

ỹi,rbd − hγgrbd(tn + cih, ỹi,rbd) = rhs, (16)

where rhs = yn + h
∑i−1
j=1 (ai,jkj + ãi,jk̃j). Hence, solving for grbd,

grbd(tn + cih, ỹi,rbd) =
ỹi,rbd − rhs

hγ
. (17)

And now frbd is completely determined by Eq. 14. After the calculations for the RBD decomposition the only thing
missing is the variable update which is done exactly in the same way as in IMEX, Eq. 11.

The ESDIRK-SIMEX algorithm for a single step of size h starting from t = tn with step approximation yn is presented
bellow:

Algorithm 1 ESDIRK-SIMEX algorithm

k1 = g(tn,yn)
k̃1 = f(tn,yn)
for i = 2; i <= ν; i+ + do
rhs = yn + h

∑i−1
j=1 (ai,jkj + ãi,jk̃j)

ỹi,rbd = F
ki = ( ỹi,rbd − rhs)/hγ

k̃i = f(tn + cih, ỹi,rbd) + g(tn + cih, ỹi,rbd)− ki
end for
yn+1 = yn + h

∑ν
j=1 bj(kj + k̃j)

An important but not so obvious observation that has to be made is about how to interpret this stepwise adjustment of
the decomposition. Taking the filter’s answer, Eq. 15, and putting it inside Eq. 10, it yields the following result:

g(tn + cih, ỹi,rbd) =
ỹi,rbd − rhs + res

hγ
, (18)

Where res is the implicit equation residue. So,

g − grbd =
ỹi,rbd − rhs + res

hγ
− ỹi,rbd − rhs

hγ
= res/hγ. (19)

And Hence,

frbd = f + res/hγ. (20)

Therefore it is possible to say that the implicit equations residue is integrated along with the explicit part.
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2.7 Iterative Methods for Implicit Equations

Iterative methods for implicit equations plays a big role in fully, or partially, implicit integration methods by affecting
directly its computational efficiency. Thus, equating robustness and memory and processing costs is fundamental.

In this work we use Newton’s step iteratios and to avoid the cost to compute and store the Jacobian matrix it is written
in a way that there’s no need of constructing the Jacobian matrix explicitly. This approach has the disadvantage of being
customized for each case listed in section 2.5. The spatial dimension is represented as a n point uniform grid, so the
variable u is written as a vector u = (u1, . . . , un). We introduce the notation [u] to represent a diagonal matrix with u as
the diagonal entries. The first derivative will be written as in Eq. 8.

Starting from the IMEX implicit equation, Eq. 10, written for u, the problem is rewritten in the shape bellow.

F(u) = u− θg(u)− rhs, (21)

where θ = hγ and rhs = h
∑i−1
j=1 (ai,jkj + ãi,jk̃j). The Newton’s step is obtained by the first order approximation of

F (u + d), where d is small compared to u. Eventually, one would end up with a linear system for the Newton’s step d,
that can be solved with very efficient methods as Thomas algorithm since A is band matrix.

Table 2: Matrix Free Newton’s Step
A B

Decomposition 1 A[1/(θu)][1 + θux] +B A[1/(θu)](−F (u))
Decompositions 2 and 4 A+ θcB −AF (u)
Decomposition 3 A[1/(θu0)] +B −A[1/(θu0)]F (u)

2.8 Butcher’s Tableau for the used Runge-Kuttas

In this work some tests are performed with explicit and implicit-explicit Runge-Kutta methods. The pure explicit one
is the classical 4th order 4 stages ERK, also called as “RK4”, which is used as reference of precision and execution time,
the tableau is given in Eq. 22. Five ESDIRK-SIMEX pairs are used and they are listed bellow.

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

(22)

The pair “HCN” is a combination of Heun and Crank-Nicolson methods, which has 2 stages and a formal 2nd

order convergence rate. Also with 2nd order, but 3 stages, there is the pair “ARS222” proposed by (Ascher et al.,
1997), using the choice of parameters γ = 1 −

√
2/2 and δ = 1 − 1/2γ. The last three, which are proposed by

Kennedy2001 under the names “ARK3(2)4L[2]SA-(ERK and ESDIRK)”, “ARK4(3)6L[2]SA-(ERK and ESDIRK)” and
“ARK5(4)8L[2]SA-(ERK and ESDIRK)”, pairs are respectively: “ARK423”, 3rd order 3 stages; “ARK634”, 4th order 6
stages and “ARK845”, 5th order 8 stages.

3. PRELIMINARY RESULTS

3.1 Maximum Stable CFL

Some tables are presented in this section, each of them containing the maximum stable CFL number, CFL per stage
and mean and maximum errors for each of the integration methods. Here the maximum CFL is defined as the highest
CFL number that is possible to run the simulation without some kind of floating point error or with a resulting mean error
bellow 10−2. The uncertainty of these CFL numbers is smaller then 0.1.

The results are grouped in each table by the IMEX decomposition. The simulation parameters are: n = 100; t = 6.5
and α = π. The last one is the manufactured solution wavenumber, the time is chosen to be long enough so the wave
can travel at least one period across the spatial domain and the discretization is chosen in a way that it’s not so refined but
still far from coarse. There’s a constant c, that when applicable, assumes the values 1.0, 0.5 and 6.0, in Tabs. 4, 5 and 7.
Lastly, a variable time-steping is used in order to keep a constant CFL for the simulation.

These tests, Tabs. 3 to 7, aim identifying which is the highest stable CFL number for each combination of method and
decomposition. The errors results are not suitable for a direct comparison, because even between methods with the same
convergence order, the truncation errors are different.
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Table 3: Classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5; n = 100; α = π. Decomposition 1.
Method Maximum CFL CFL per Stage Mean Error Maximum Error

RK4 1.4 0.35 2.12597336391e-08 5.53578647366e-08
ARS222 1.4 0.47 2.12597336391e-08 5.31696036359e-05

ARKHCN 0.8 0.40 5.31696036359e-05 5.33712707123e-05
ARK423 1.2 0.30 1.35042794817e-06 3.2319289156e-06
ARK634 1.8 0.30 3.87861306506e-08 1.10751743665e-07
ARK845 2.2 0.27 2.20427199615e-08 5.64687081539e-08

Table 4: Classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5; n = 100; α = π; c = 0.5.
Decomposition 2.

Method Maximum CFL CFL per Stage Mean Error Maximum Error
RK4 1.4 0.35 2.12597336391e-08 5.53578647366e-08

ARS222 0.5 0.17 6.92703387128e-07 1.63334577019e-06
ARKHCN 0.5 0.25 7.44611892022e-07 1.71130735405e-06
ARK423 1.9 0.47 9.53206692589e-08 1.75987866058e-07
ARK634 1.7 0.28 2.86721002751e-08 6.62538695018e-08
ARK845 1.4 0.17 2.38761007099e-08 5.51128892523e-08

The obtained result for the RK4 was pretty consistent, showing a maximum CFL number of 1.4 and 1.3 for the non-
linear and linear case respectively. All other tests were also consistent except for decomposition 2, where there was an
increase of the maximum CFL number for ARK423 and a decrease for every other SIMEX tableau. It’s not clear why
this variations occurred, but the results were replicable even changing some parameters.

Table 5: Classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5; n = 100; α = π; c = 1.0.
Decomposition 2.

Method Maximum CFL CFL per Stage Mean Error Maximum Error
RK4 1.4 0.35 2.12597336391e-08 5.53578647366e-08

ARS222 0.6 0.2 2.16166959997e-06 5.23954220011e-06
ARKHCN 0.7 0.25 3.8248342577e-06 8.73097576637e-06
ARK423 1.5 0.37 2.92057404881e-07 1.42896969668e-06
ARK634 1.65 0.27 1.58342790316e-06 1.37241348535e-05
ARK845 1.75 0.22 2.38639030237e-08 5.27925102523e-08

Table 6: Classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5; n = 100; α = π. Decomposition 3.
Method Maximum CFL CFL per Stage Mean Error Maximum Error

RK4 1.4 0.35 2.12597336391e-08 5.53578647366e-08
ARS222 1.5 0.5 2.25566960148e-05 6.23677746594e-05

ARKHCN 0.9 0.45 2.45096164958e-05 6.6238264234e-05
ARK423 1.2 0.30 9.51473536619e-07 2.13228285784e-06
ARK634 1.8 0.30 3.21259124247e-08 8.22027608205e-08
ARK845 2.2 0.27 2.07414324993e-08 5.24803230872e-08

The highest CFL result was obtained for the ARK845, 2.3 in Tab. 7, as expected, due to its higher order. The
smaller value for each test is always obtained for the one with the lowest order and less stages, which was also expected.
Disconsidering the outlier results for decomposition 2, Tabs. 4 and 5 , ARKHCN is always isolated with the worst CFL
result. The pair ARS222 with only one more stage than ARKHCN was able to achieve up to 70%, even 100%, higher
CFL numbers. Despite these differences in performance, both tableau pairs are strong candidates to beat the RK4’s CPU
time, due to its high maximum CFL numbers if taken in account the low number of stages. In the other hand, the pair
ARK423 had a curious increase in stability at the decomposition 2 tests, what makes it a good candidate in this case.
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Table 7: Classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5; n = 100; α = π; c = 6.0.
Decomposition 4.

Method Maximum CFL CFL per Stage Mean Error Maximum Error
RK4 1.3 0.32 6.68213096799e-08 8.38123477287e-08

ARS222 1.6 0.53 1.11847720401e-05 2.87018115995e-05
ARKHCN 0.8 0.40 1.04666337489e-05 2.37316281639e-05
ARK423 1.2 0.30 6.9711260396e-07 1.16764736607e-05
ARK634 1.8 0.30 1.59663717008e-07 8.44560643687e-06
ARK845 2.3 0.29 4.36773949997e-07 3.15404632989e-05

3.2 CPU Time

In this section the CPU time for the simulations are measured, with help of a Python’s built in function, and then
plotted against the mean error, both in logarithmic scale. For the first 4 figures, the simulations parameters are the same as
in the previous section and than the instance with best result is tested more deeply. Each method runs at their maximum
CFL and at two close by values. No parallelization technique was employed.

−7.5 .7.0 .6.5 .6.0 .5.5 .5.0
log(Err Mean)

0.7

0.8
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lo
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tim

e)

n = 100; tmax = 6.5; alpha = pi

ERK4_Classico
ARKHCN-SIMEX

ARS222-SIMEX
ARK423-SIMEX

ARK634-SIMEX

Figure 1: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5;
n = 100; α = π. Decomposition 1

In a broad sense it can be observed that in 3 out of 5 instances, Fig. 1; 4 and 5, the 2nd order tableau pairs presented
the lowest execution time among the SIMEX. Furthermore the ARS222 consistently beats the ARKHCN. This shows that
the cost of having one more stage is advantageous for ARS222. However, none of them was effectively faster than the
RK4.

In the decomposition 2 cases, Figs. 2 and 3, the ARK423 was the quickest among the SIMEX, which confirms the
expectation, but still a bit slower than the RK4. Another interesting thing that calls attention is that this 3rd order SIMEX
gives a solution almost as precise as the one given by the RK4. Lastly, one must call the attention to the 2nd order SIMEX
methods which got a technical tie with the RK4 on the last test, Fig. 5. However, it came with a cost of a mean error 3
orders of magnitude greater.

Motivated by the results shown in Fig. 5 where the two 2nd order SIMEX basically equates the implicit steps’ cost if
compared to the reference explicit method, further investigation was made. Figure 5 shows that if the problem’s stiffness
is increased, SIMEX is more likely to be faster than the RK4. In this instance 3 different advection speeds are used and
the simulation total time was raised to tmax = 30 in order to let the execution time scale grow. Both ARKHCN and
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Figure 2: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5;
n = 100; α = π; c = 1.0. Decomposition 2
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Figure 3: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5;
n = 100; α = π; c = 0.5. Decomposition 2

ARS222 were faster than the reference method, but the second was consistently the fastest. In Fig. 6 ARS222 decreased
the RK4’s CPU time by 10.5%; in Fig. 7 by 13.8% and in Fig. 8 by 13.6%. The bigger stiffness does favor SIMEX
efficiency, but there’s no clear growth relation between them.

4. CONCLUSIONS

A test case successfully developed where the SIMEX method was implemented in a simplified version of the GATT’s
DNS code and than it was possible to measure the execution time and solution’s quality and compare the results to the
ones obtained with a classical 4th order explicit Runge-Kutta. For such test the 1D Burgers’ equation was used.
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Figure 4: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5;
n = 100; α = π. Decomposition 3

−7.0 −6.5 −6.0 −5.5 −5.0 −4.5 −4.0 −3.5
log(E(( Mean)

0.2

0.3

0.4

0.5

0.6

0.7

lo
g(
CP

U 
tim

e)

n = 100; tmax = 6.5; alpha = pi; cte = 6.0

ERK4_Classico
ARKHCN-SIMEX

ARS222-SIMEX
ARK423-SIMEX

ARK634-SIMEX

Figure 5: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 6.5;
n = 100; α = π; c = 6.0. Decomposition 4

Many tableau pairs were tested and they showed great impact on SIMEX efficiency but none of them was actually
faster than the reference method for the non-linear case. The results for the linear Burgers’ equation were favorable for
SIMEX only when the convection speed was above a certain value, namely, the stiffness. Additionally, this positive results
were only observable for the two second order tableau pairs. Despite the not so favorable results in these tests, it’s not a
bad sign for the SIMEX’s performance with regard to future research, but the opposite. This conclusion is supported by a
few things that need to be considered.

The model’s stiffness is given by the convective term and when it is set in the implicit part the maximum step-size is
now defined by the dissipative term; this doesn’t happen in the DNS code. Considering the compressible Navier-Stokes
equations, the terms related to convection and acoustic waves are the source of stiffness. At low Mach number flows, the
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Figure 6: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 30;
n = 100; α = π; c = 10.0. Decomposition 4

propagation of acoustic waves imposes a much greater time-step restriction and a precise solution of this phenomena is
not necessary unless one is studding aeroacoustics.

Besides, typical simulations use nonuniform meshes, where each spatial coordinate has a different refinement, which
yields fairly different grid points density. Considering the standard 2D test case set in the DNS code, the grid points
density is approximately one order of magnitude greater in the y axis. In other words, the grid stiffness is considerably
higher in this direction. This intense refinement in the vertical direction in due to the necessity to resolve precisely the
boundary layer and it’s related phenomena.

Lastly, the choice of the decomposition is crucial for implicit-explicit method’s efficiency, always seeking the best
relation between higher time-stepping and implicit equation’s complexity. The iterative method for implicit systems and
the tableau pair also have huge impact on the efficiency. As a work guideline, SIMEX should be faster than the reference
ERK no matter what tableau is used. But, in the other hand, the ones with less stages gave better results. That’s a good
indicative of what to investigate.

The next section presents a draft for the work’s next phase containing the DNS governing equations, proposed IMEX
decompositions and iterative methods.

5. NEXT STEPS

By the time the preliminary tests are ended, the next step is to implement the SIMEX method into the DNS code. A
detailed explanation for the DNS code’s structure is found in Mathias (2017).

The fluid’s thermodynamic state is completely defined by the density (ρ), internal energy (e) and the three velocity
components (u,v,w). Each variable depends on location (x,y,z) and time (t). The equations for the conservation of
linear momentum, mass and energy are written in the non-conservative form, which solves for each individual variable
mentioned above, simplifying the boundary conditions. The pressure p is calculated assuming an ideal gas.

The first proposed IMEX implicit part is to be the source terms of acoustic wave propagation in the y direction, due to
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Figure 7: CPU time versus mean error for classical 4th order ERK and SIMEX with different tableaus. tmax = 30;
n = 100; α = π; c = 40.0. Decomposition 4
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refined grid in this direction. Hence, the implicit-explicit decomposition is defined as

g(y) =

 −ρ0vy
−γ−1ρ0 (ρ0ey + ρye0)

−p0ρ0 vy

 and f(y) = dy
dt − g(y), (23)

where the zero subscript as in ρ0 represents the variable’s value at the beginning of the integration step, which is kept
constant through the entire step. The subscript y as in vy denotes the derivative with respect to y, the constant γ, in the
DNS context, is the thermodynamic relation cp/cv and

y =

 ρ(y, t)
v(y, t)
e(y, t)

 . (24)

One good evidence that this proposed decomposition does group all the acoustic wave’s source term that propagates
in the y direction is to be able to retrieve the wave equation starting from these terms, which is true, indeed.

The last item to be considered in this initial approach is the choice of an iterative method for the implicit system.
Could be of great use a method that is simple to code and has a low processing cost as Gauss-Seidel and Gauss-Jacobi,
so it’ll be possible to have the first insights about the SIMEX’s efficiency in the DNS. These iterations requires little
computational effort and hopefully the increase in the time-step will more than compensate that cost. As the time-step
becomes larger and larger, the off diagonal terms become larger, which makes the system more difficult to solve. Hence
it may be necessary to use more powerful methods.
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