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Abstract. The study of jet flows is important in many industrial applications. In the present work, the equations that model
jet flows of an Oldroyd-B type viscoelastic fluid are presented and the Linear Stability Theory (LST) is used to study the
stability of the viscoelastic fluid flow to unsteady disturbances. For the LST analysis, the Orr-Sommerfeld equation is
modified to include viscoelastic effects. It was observed that for high Reynolds numbers, the non-Newtonian effects do not
affect the growth rates in relation to the result of the Newtonian jet, however, for low Reynolds numbers, the growth rate
varies with Weissenberg number Wi and the solvent viscosity parameter β.
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1. INTRODUCTION

Fluid Mechanics is the branch of science that studies the behavior of fluids, whether the fluid is at rest or motion, it
is subjected to different conditions and it behaves as per its physical properties. There are many scientific and industrial
applications where the laminar flow stability and transition to turbulence are relevant and so it is important to investigate
the physics of stability and laminar-turbulent transition to control, advance or prevent it (Furlan et al., 2018).

One area that has made significant progress has been the area of transition to turbulence. The first investigations
made by Rayleigh concerning the stability of free shear flow inviscid were investigated taking into account the viscous
effects. Orr (1907) and Sommerfeld (1908) derived the equation for infinitesimal disturbance in free shear flow viscous
independently (Silveria Neto, 2002). This equation takes its names today. The great difficulty in resolving it required an
arduous effort to make further progress, which started to happen with Tollmien (1935) and Schlichting (1933, 1935).

Mechanisms and phenomena related to disturbances amplification in laminar flows are denoted by instability. De-
scriptively, instability denotes the property that the flow is subject to a change in its initial state of equilibrium if slightly
disturbed. The result of a stability analysis is the growth of the initial disturbance in space (spatial instability) or in time
(temporal instability) (Gaster, 1968). This growth can be measured in terms of the energy contained in the disturbance or
in terms of the amplitude of the velocity fluctuations (Marxen, 2005).

The stability analysis of planar Poiseuille flow of Oldroyd-B and Giesekus fluids show that this flow becomes more
unstable and the instability region of the flow is increased when β and Weissenberg (Wi) parameters are increased (Brandi
et al., 2017a, 2019; Furlan et al., 2018). Zhang et al. (2013) have investigated the modal and non-modal stability of both
FENE-P and Oldroyd-B fluids in channel flow. The FENE-P model includes an upper bound for the extension of polymer
molecules and can more reliably represent dilute polymer solutions where significant drag reduction in the turbulent
regime is observed (Zhang et al., 2013). The references show that the stability of confined non-Newtonian flows have
received considerable attention. On the other hand, the stability for non-Newtonian plane jet flows is little known.

The study of laminar jet flows of Newtonian fluids is of basic relevance in the mixture of polymers, extrusion, injection
molding and drag reduction. It is worth mentioning that the jet flow for such fluid was studied theoretically and experimen-
tally by Schlichting and Kestin (1968). However, polymer solutions exhibit elastic effects, in addition to non-Newtonian
behavior. Thus, a complete study should include these differences (Vlachopoulos and Stournaras, 1975).

Among the first investigations, one can consider the work of Rallison and Hinch (1995), who considered the submerged
elastic jet characterized by a parabolic profile flow for high Reynolds numbers. They found that the sinuous mode is fully
stabilized by great elasticity, while the varicose mode is partially stabilized. In its linear stability analysis, the viscoelastic
flow was modeled by the Oldroyd-B constitutive equation, and it was less unstable with the increase in the elastic effect,
but not fully stable. Zhang (2012) investigated the viscoelastic jet problem, in which the Oldroyd-B model was used
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for the constitutive equation. In this study, the result of the modal stability analysis in polymeric jets indicated that the
elastic effect not only affected the hydrodynamic instability, increasing its critical Reynolds number, but also led to the
emergence of a new instability mechanism, called elastic instability, for small numbers of Reynolds.

Thereafter, Yang et al. (2012, 2013) investigated the problems of electrified viscoelastic jets and viscoelastic jets sur-
rounded by swirling air, respectively. In both studies, the linear stability analysis was considered: in the first work, a dis-
turbance growth rate of electrified viscoelastic jets is higher than the electrified Newtonian jets for the axisymmetric mode
and almost the same for the non-axisymmetric mode. In the second work, the results shown that the three-dimensional
viscoelastic fluid are more unstable than Newtonian fluid flow, considering the whirlwind. More recently, Ye et al. (2016)
investigated the axisymmetric instability of a circular jet with viscoelastic compound, in which the Oldroyd-B model
was considered. Linear stability analysis was used and it was observed that the viscoelastic jet is more unstable than the
Newtonian jet, regardless of whether the viscoelastic jet is totally viscoelastic or not.

In the present work the spatial linear stability analysis of two-dimensional viscoelastic jets flows for the Oldroyd-B
constitutive equation are considered. Stability characteristics in terms of growth rate and phase velocity for different
dimensionless non-Newtonian parameters are compared to Newtonian fluid flow results.

2. MATHEMATICAL FORMULATION

This section presents the equations that model isothermal and incompressible flows for non-Newtonian fluids. The
Oldroyd-B model is considered for the extra-stress tensor.

2.1 General equations and base flow

Considering an incompressible, isothermal flow of a non-Newtonian fluid, the dimensionless governing equations are
given by the continuity and momentum equations, respectively

∇ · u = 0, (1)
∂u
∂t

+∇ · (uu) = −∇p+
β

Re
∆u +∇ · T, (2)

where u denotes the velocity field, t is the time, p is the pressure, β is the dimensionless coefficient of the solvent viscosity,
Re is the Reynolds number and T is the extra-stress tensor. Viscoelastic flows are studied in which the constitutive
equation used is the Oldroyd-B model given in non-dimensional form by

T +Wi

[
∂T
∂t

+∇ · (uT)− T(∇u)T − (∇u)T
]

= 2
(1− β)

Re
D, (3)

where Wi is the Weissenberg number and D = 1/2
(
∇u + (∇u)T

)
is the rate of deformation tensor.

In this paper, viscoelastic jets flows are studied. The streamwise and wall-normal directions are given by x and y,
respectively and the laminar base flow is assumed parallel. The streamwise base flow velocity component is the same
used by Weder (2012) and the non-Newtonian extra-stress tensor components of the base flow are given by

U(y) =
1

2

[
1 + tanh

R

4θ

(
R

y
− y

R

)]
, T yyb = 0, T xyb =

(1− β)

Re

dU

dy
and T xxb = 2WiT xyb

dU

dy
, (4)

where R denotes the jet half-width and θ the momentum boundary layer thickness.

2.2 Linear stability theory

The Orr-Sommerfeld equation for an Oldroyd-B type viscoelastic fluid has been presented by Souza et al. (2016). The
instantaneous flow is decomposed into two parts, a base flow and a disturbance flow. The base flow is considered parallel
and invariant in the x direction. The disturbances are written as normal modes

φ(x, y, t) = φ(y)ei(αx−ωt), (5)

where φ represents the magnitude and phase of the disturbances, i =
√
−1, α = αr + iαi is the wavenumber in the x

direction and the spatial growth rate and ω is the angular frequency. Substituting the normal mode solution (5) into the
disturbance Navier-Stokes equations and rewriting in a simplified way gives the modified Orr-Sommerfeld equation for
Oldroyd-B fluid

d4v

dy4
−
[
i(αU − ω)

Re

β
+ 2α2

]
d2v

dy2
+

[
i
Reα

β

d2U
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+ i

Reα2

β
(αU − ω) + α4

]
v +

+
Re

β

[
α2 dT

xx
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− iαd

2T xy

dy2
− iα3T xy − α2 dT

yy

dy

]
= 0. (6)
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This equation is known as the Orr-Sommerfeld equation for a viscoelastic fluid, Oldroyd-B type (Souza et al., 2016).
The solution of the Orr-Sommerfeld equation corresponds to an eigenvalue problem. The solution is directly linked to
the values of α, ω, Re, β and Wi, and depends on the base flow velocity profile in question (Brandi et al., 2017b). The
non-Newtonian extra-stress tensor components, presented in Equation (6), are given by

T yy (1− i(ω − αU)Wi) = −Wi

(
dT yyb
dy

v − 2iαvT xyb − 2
dv

dy
T yyb

)
+

2 (1− β)

Re

dv

dy
, (7)

T xy (1− i(ω − αU)Wi) = −Wi

(
v
dT xyb
dy
− iαvT xxb −

dU

dy
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+
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(
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i

α
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, (8)

T xx (1− i(ω − αU)Wi) = −Wi

(
v
dT xxb
dy

+ 2T xxb
dv

dy
− 2T xyb
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α

d2v

dy2
− 2T xy
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)
− 2 (1− β)

Re

dv

dy
. (9)

Considering the Equations (7) – (9) together with appropriate boundary conditions one can obtain results of linear
stability analysis. The Orr-Sommerfeld Equation (6) also needs to be evaluated at the boundaries for plane jet flows
(Kundu and Cohen, 2010), auxiliary conditions are specified as follows

U∞ = Ucoflow, for y → ±∞, and T xxb = T xyb = T yyb = 0.

In addition, all derivatives of U and Tb relative to y must be zero as y → ±∞ and the disturbances decay exponentially
away from the jet shear layer.

3. NUMERICAL RESULTS

Figure 1 shows a code verification, comparing the growth rates of non-Newtonian results with Newtonian and Rayleigh
results. For this, Re = 8400, β = 1 and Wi = 0 were considered for both sinuous and varicose stability modes. At
Re = 8400 viscous effects for the jet are already not relevant, showing that the stability is inviscid and due to inflexion
points in the velocidty distribution. The results of the current non-Newtonian fluid implementation are in good agreement
with Newtonian and Rayleigh instability results.

(a) Varicose mode. (b) Sinuous mode.

Figure 1. Varicose and sinuous modes growth rates variation with frequency for Re = 8400.

Figures 2 and 3 show the variation in the growth rate αi with Reynolds numbers, obtained by fixing the angular
frequency ωmax corresponding to the fastest growing mode of the Newtonian jet at Re = 4000.

(a) (b) (c)

Figure 2. Dependency of growth rate on Reynolds number for varicose mode for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.
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(a) (b) (c)

Figure 3. Dependency of growth rate on Reynolds number for sinuous mode for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

As shown in Figs. 2 and 3, as the Reynolds number increases the results become independent of the Weissenberg
number and solvent viscosity parameter β. The effect of the non-Newtonian parameters become relevant at Reynolds
numbers below 500, where high Weissenberg numbers and low β are the most unstable.

Table 1 shows the ωmax values used to construct the graph of dependence on the growth rate on Reynolds number to
varicose and sinuous modes.

Table 1. ωmax angular frequency values.

Varicose Mode Sinuous Mode
Wi β = 0.2 β = 0.5 β = 0.8 β = 0.2 β = 0.5 β = 0.8
2 0.94043750 0.94087499 0.94174999 1.096625 1.0970625 1.0970625
6 0.93825 0.94 0.94131249 1.0975 1.0979375 1.0975

10 0.93431252 0.93781251 0.9404375 1.096625 1.0975 1.0979375
14 0.92949998 0.93562502 0.94 1.0935625 1.0970625 1.0979375

The growth rate αi variation with angular frequency ω are presented in Figs. 4 and 5 for the varicose and sinuous
modes and different Weissenberg numbers. The varicose mode highest growth rate is about 10% higher than that of the
sinuous mode, but their stability characteristics are very similar, with the same range of unstable frequencies. Figure 4
shows growth rates in the varicose mode for Re = 250, β = 0.2, 0.5 and 0.8 and Wi = 2, 6, 10 and 14 and also the
Newtonian fluid (considering β = 1 and Wi = 0).

(a) (b) (c)

Figure 4. Varicose mode growth rate versus angular frequency for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

For the varicose mode, β = 0.2 and 0.5 and Wi = 10 and 14, the results are not consistent and may be spurious
results, but further investigations on these modes are underway. Figure 5 shows growth rates for the sinuous mode using
the same parameters as that of the varicose mode. The non-Newtonian effects are stronger for the sinuous mode, where
both the maximum growth rate and range of unstable frequencies decrease with increasing Weissenberg and decreasing β
parameter.
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(a) (b) (c)

Figure 5. Sinuous growth rate versus angular frequency for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

The wavenumber αr variation with angular frequency are presented in Figs. 6 and 7 for the varicose and sinuous
modes and different Weissenberg numbers. It is worth mentioning that for β = 0.2 and 0.5 the varicose mode presented
inconsistent results for some Weissenberg numbers, which are been investigated to verify if these are spurious modes or
results related to elastic instability.

(a) (b) (c)

Figure 6. Varicose wavenumber versus angular frequency for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

(a) (b) (c)

Figure 7. Sinuous wavenumber versus angular frequency for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

Figs. 8 and 9 show the variation of the disturbance phase velocity forRe = 250. It shows that for both the varicose and
sinuous modes the disturbances are dispersive, with a strong depedence on the frequency for low frequency values. The
phase velocity for the sinuous mode is more strongly dependent on non-Newtonian effects. Inconsistent results, which
may be spurious mode, have been omitted.
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(a) (b) (c)

Figure 8. Varicose phase velocity versus angular frequency for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

(a) (b) (c)

Figure 9. Sinuous phase velocity versus angular frequency for (a) β = 0.2, (b) β = 0.5 and (c) β = 0.8.

In order to analyze the behavior for different Reynolds values, the solvent viscosity parameter was fixed β = 0.5. The
growth rate αi variation with angular frequency ω are presented in Figs. 10 and 11 for the varicose and sinuous modes
and different Reynolds and Weissenberg numbers.

(a) (b) (c)

Figure 10. Varicose growth rates versus angular frequency for (a) Re = 500, (b) Re = 1000 and (c) Re = 2000.

(a) (b) (c)

Figure 11. Sinuous growth rates versus angular frequency for (a) Re = 500, (b) Re = 1000 and (c) Re = 2000.
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As the Reynolds number increases the non-Newtonian effect on the stability is reduced. Increasing further the
Reynolds number results in even lower non-Newtonian effects on the results. This is expected for free-shear layers
for which the stability is governed by the Rayleigh equations for high Reynolds numbers, where diffusive effects are not
relevant.

Figure 12 shows the variation in the maximum growth rate with β for different Weissenberg numbers. At low values of
Wi the growth rate increases with β for the varicose mode, but in general as β decreases the growth rate increases for the
varicose mode and decreases for the sinuous mode. For high Wi and low β values the inconsistent results are presented
as growth rates independent of β for the varicose mode.

(a) Varicose mode. (b) Sinuous mode.

Figure 12. Maximum growth rate variation with β for different Weissenberg numbers for Re = 250.

Figure 13 shows the variation in the maximum growth rate with the Weissenberg number for different β values. For
the sinuous mode, the growth rate initially increase with increaseing Wi, but above a certain value it starts to decrease.
This behavior has already been observed for the stability of non-Newtonian Poiseuille flow (Brandi et al., 2019).

(a) Varicose mode. (b) Sinuous mode.

Figure 13. Maximum growth rate variation with the Weissenberg number for different β for Re = 250.

4. CONCLUSIONS

In this work, a spatial stability analysis was performed through the Linear Stability Theory for viscoelastic jet flows.
The Oldroyd-B model was used and different values of dimensionless parameters were tested for non-Newtonian fluid
flows. The LST code was based on a Shooting method and considered spatial disturbances for stability analysis. The LST
code was verified by comparison with results obtained using the Rayleigh equation.

The results show that non-Newtonian effects are relevant at low values of Reynolds number. It was observed that as
the amount of the polymer concentration in the fluid and Weissenberg number are decreased and the Reynolds number
is increased the non-Newtonian effect on the stability is reduced. Furthermore, non-Newtonian effects reduce the growth
rates and change the phase velocity when compared to Newtonian flows.
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