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Abstract. We performed direct numerical simulations (DNS) of bi-disperse particle-laden gravity currents on a lock-
exchange configuration with different values of Schmidt number (Sc) for each particle fraction, to investigate the impact
of double mass diffusivity on flow dynamics and deposition. We used the high-order code Incompact3d to solve the incom-
pressible Navier-Stokes equations and the scalar transport equation. We compared our results with previous physical and
numerical experiments available in the bibliography, obtaining a good agreement. We simulated two cases: (i) Sc = 1
for both particle fractions and (ii) Sc = 3 and Sc = 1, for coarse and fine fraction, respectively. Case (ii) shows higher
reduction of the front velocity of current during the deceleration phase. For case (i), the current has higher amount of
suspended fine particle during all the experiment, which could explain why the front velocity has lesser decreasing during
the deceleration phase. The configuration of the final deposit profile shows that case (ii) has the highest deposit peak
nearer to the lock-exchange gate than the case (i). We also calculated the temporal evolution of the energy budget of our
simulations, and we find that the energy is conserved during all time of our simulations and the term relate to turbulent
dissipation is the principal responsible for energy loss.

Keywords: Bi-disperse current, particle-laden gravity current, direct numerical simulation, high-order numerical simu-
lation, deposition of particles.

1. INTRODUCTION

Gravity currents are created when there is a gradient of pressure between two fluids due to difference of density.
When the main gradient is in horizontal direction, one fluid propagates horizontally through the other. The variation of
density could be caused by a difference of temperature, salinity or suspended particles in a fresh fluid. Gravity currents
are formed in many different natural situations as well as human-made. Some examples (see Fig. 1) of natural situations
are thunderstorm outflows, sea-breeze fronts, airborne snow, sandstorms, powder snow avalanches and pyroclastic flows.
In the ocean, these flows are driven by salinity and temperature inhomogeneities, or like in turbidity currents whose
density gradients derive from suspended mud or silt. There are essential applications in different areas like aircraft safety,
entomology and pest control, and in pollutants spreading into the atmosphere, lakes, and rivers. In a industry context,
these flows can be observed in the manufacturing process of sheet glass. In a engineering context, these flows can destroy
submarine pipes and cables (Simpson, 1982).

The particle-laden gravity currents are an example of flow caused by the presence of suspended particles in a fresh
fluid. This kind of current is considered non-conservative because particle sedimentation decreases the gradient of density
between the flow and the surrounding fluid. This behaviour is very different from conservative currents, where the gradient
of density is created by temperature or salinity differences, and there is no sedimentation. In a geophysical context,
particle-laden currents are an essential mechanism for sediment transport from shallow to deep water. In the offshore
environment, non-conservative currents of sand could form deposits with great potential of being hydrocarbon reservoirs
as the oil reservoirs in the pre-salt layer, for instance (Meiburg and Kneller, 2010; Lucchese, 2018).

The behaviour of gravity currents can be understood through physical experiments (Simpson, 1972; Huppert and
Simpson, 1980; Manica, 2009) or numerical simulation (Kubo, 2004; Cantero et al., 2007). The studies of Winters et al.
(1995), Necker et al. (2005) and Espath et al. (2014) develop a methodology to calculate the energy budget of the flow.
They perform numerical simulation of mono-disperse gravity currents and, demonstrate the relationship between each
term involved in the energy budget and other global quantities like front position, suspended mass and final deposit
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Figure 1. Some examples of gravity currents: (a) sandstorms (source: G1), (b) mountain snow avalanche (source: ESA)
and (c) manufacturing of sheet glass (source: KOG).

Figure 2. Schematic view for the initial configuration of lock-exchange flow. The mixture of particles and fluid is initially
in the lock, filled region. Source: Francisco et al. (2017).

profile. The interaction of a particle-laden flows with three-dimensional topography was studied by Nasr-Azadani et al.
(2016) through numerical simulations. Lucchese (2018) analyzed the influence of alteration of bottom topography for
poly-disperse flows in a numerical context. In a experimental context, Gladstone et al. (1998) made experiments of poly-
disperse flows to understand the impact of initial mixture of different particle fraction in current dynamics. They found
that different initial concentrations had a strong impact in the features of the flow.

In a numerical context, Francisco et al. (2017) studied bi-dispersed particle-laden gravity in the lock-exchange con-
figuration. Their work analyzed the impact of the initial concentration of different particle diameters in the main features
of the flow. Their results show that high concentration of fine particles makes the current reach larger distances when
comparing to flows with greater concentration of coarse particles. Their study used a unique unitary Schmidt number in
all their simulations. In this paper, we want to extend their study by adding the effect of double mass diffusivity.

Our goal in this research is to understand the effect of different values of Schmidt number, for each particle fraction, on
non-conservative and bi-disperse gravity currents, through the measurement of some flow and deposit variables as front
position and velocity, suspended material, mass sedimentation rate and deposit profile. We also compute the temporal
evolution of the energy budget of the current. We use the in-house code Incompact3d to simulate (by DNS) bi-disperse
and double diffusive particle-laden gravity currents in lock-exchange configuration (see Fig. 2), for a Reynolds number
of 4000. We perform numerical experiments at the same initial concentration of coarse and fine fraction particle for
unique and different values of Schmidt number. Our approach only considers the particle deposition, ignoring erosion and
re-suspension. We compare our data with previous physical and numerical experiments presented in the literature.

2. METHODOLOGY

In this section we describe the governing equations, the flow configuration as well as the treatment for the data post-
processing.

2.1 Flow configuration and governing equations

The lock-exchange flow configuration in a confined channel is used in this numerical study. This arrangement consists
of a homogeneous mixing of sediment and fresh fluid which are trapped in an initial fraction of the dimension domain,
separated from the clear fluid by a gate. When simulation begins, the gate is removed and the particle-fluid mixing flow



12th Spring School on Transition and Turbulence
September 21st-25th, 2020, Blumenau, SC, Brazil

due to the gravity action. Two mechanisms are responsible for motion: the first one is the transformation of potential
energy into kinetic energy, the second one is the diffusive motion that is generated by the potential difference between
heavy and clear fluid.

To evaluate the flow motion, we solve numerically the incompressible Navier-Stokes equations and the scalar (sedi-
ment) transport equation under the Boussinesq approximation. The dimensionless equations can be written as
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where ui, p and cl are respectively velocity, pressure and total particle concentration fields. ct is the total particle concen-
tration. i and j are the indexes for each spatial coordinate. egi = (0, −1, 0) is the unitary vector acting in the direction
of the gravitational acceleration. usl is the settling velocity of the particle fraction l related to its diameter. N is the total
number of particles fractions in the current, being each fraction characterized by a different diameter. As in this study, all
our simulations were bi-disperse, then N = 2. The Reynolds and Schmidt numbers are respectively defined by
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, (4)
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where ũb, h̃ and ν̃ are the buoyancy velocity, the characteristic length scale (corresponding to the lock-exchange height)
and the kinematic viscosity coefficient, respectively. Scl and k̃l respectively are the Schmidt number and the mass diffu-
sivity coefficient for the particle fraction l.

The total particle concentration, is obtained by the sum of each particle fraction

ct =

N∑
l=1

cl l = 1, ..., N. (6)

As the ct is already normalized by the total initial concentration of the mixture, in the initial configuration (Fig. 2),
the sum of all particle fractions is 1 in the lock region and 0 at the rest of the domain.

A Cartesian mesh with n1 × n2 × n3 grid points is used in a domain of size L1 × L2 × L3. For the velocity field,
we apply no-slip boundary condition at the bottom of domain, periodic conditions at x3 = 0 and x3 = L3, and free-slip
conditions for the other boundaries. For the scalar field, we used null normal gradient boundary condition on x1 = 0 and
x1 = L1, periodic condition at x3 = 0 and x3 = L3, and no-flux at x2 = L2. In order to take into account the particles
deposition in the vertical direction at the bottom of the domain, the following outflow boundary condition is used,
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This condition allows to mimic the process of sediment leaving the computational domain when it touches the bottom
wall. A perturbation on the velocity field at the interface between the two fluid is applied to simulate the effect of removing
the gate. We use a white noise with 10% of the initial potential energy of the current with a initial perturbation.

In natural flows, as salt mixtures, the Schmidt number could be very high and computationally expensive to simulate.
Moreover, for particle-laden flows, the mass diffussivity coefficient representative of the mixture, is not well defined. To
overcome this problem, we use an estimation based on the diffusivity coefficient for each particle fraction, considering
the Einstein-Stokes equation,

kl =
kBT

6πµrl
, (8)

where kB is the Boltzmann’s constant, T is the absolute temperature, µ is the dynamic viscosity coefficient and rl is
the radius of each particle fraction l. Then, applying the ratio between the Schmidt number of the two particles and
considering the Eq. (8), we obtain a relation between the ratio of Schmidt number and the radius of each particle fraction,
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Sc2

=
k2

k1
=
r1

r2
. (9)

We propose in this paper to apply this ratio in a simulation, which means employing two Schmidt numbers, one for
each particle fraction.
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2.2 Software

We used the in-house code Incompact3d (www.incompact3d.com) to solve the incompressible Navier-Stokes equation
and scalar transport equation presented above. This code employs a compact sixth-order finite difference scheme for
spatial differentiation and a third-order Adam-Bashforth scheme for time integration. To apply the incompressibility
condition, a fractional step method requires to solve a Poisson equation. This equation is fully solved in spectral space via
the use of relevant 3D Fast Fourier Transforms. For more information about the numerical code and the parallel strategy
used for Incompact3d, we recommend Laizet and Lamballais (2009) and Laizet and Li (2011).

2.3 Post-processing

In order to quantify the impact of double mass diffusivity in the numerical experiments, we calculate the current front
position and velocity, the suspended mass, the sedimentation rate, the deposit height and the temporal evolution of energy
budget of the flow. These quantities are computed at post-processing stage. Part of the post-processing step is embedded in
the code Incompact3d, and the other part was carried out by using the programming language Python with some functions
of libraries Numpy and SciPy for numerical integration. In this section, we are going to explain each method that we used
in this step.

2.3.1 Evolution of current front position and velocity

To measure the current front position, xf , we follow a procedure using a vertical and span-averaged total concentration
defined as
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1
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0
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with this definition, the flow front position in our configuration is computed as the most forward point at x1 where the
averaged total concentration overcomes a threshold value which, in our calculations, is 0.1%.

Usually, the flow front velocity, uf , is measured by calculating the derivative of the front position. Unfortunately, the
frequency that we save the data of our simulations introduces some noise, compromising the interpretation and reducing
the accuracy when we apply this method. Because of that, we choose to use the recent method proposed by Farenzena
(2020). This method determines the velocity of the front as the maximum point of an integral quantity. The reference
velocity u in each point of the domain is defined as
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The front velocity is estimated as the u maximum value inside the head flow

uf (t) = max [u (−Lhead < x1 − xf < 0, t)] , (12)

where Lhead is the size of current head.

2.3.2 Suspended mass and sedimentation rate

We also analyse the temporal evolution of the suspended material and the sedimentation rate. The suspended mass is
computed as the volume integral of the total concentration in all the domain, Ω, for each particle fraction,

mpl (t) =

∫
Ω

cl dΩ l = 1, ..., N, (13)

where mpl is the suspended mass for particle fraction l. The following equation gives the temporal evolution of sedimen-
tation rate, ṁsl , for the particle fraction l
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where cwl
is the concentration at the bottom of the domain (x2 = 0).
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2.3.3 Deposit mean profile and composition

In the numerical formulation, we impose at the bottom of the domain, the boundary condition defined in Eq. (7) to
ensure that the sediments leave the computational domain throughout the simulation. Therefore, it is possible to calculate
the mass deposited by the sedimentation process by integrating the mass flux through the bottom over time. The mass
deposited profile, of particle fraction l, after a time t, is obtained by

Dl (x1, t) =

∫ t

0

< cwl(x1,τ) >x3
usl dτ l = 1, ..., N, (15)

where < . >x3
operator denotes spanwise averaging. The profile of total mass deposited is expressed by

Dt (x1, t) =

N∑
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Dl (x1, t) l = 1, ..., N (16)

in this equation, the contribution of each particle fraction to the deposit can be quantified by the ratio of Dl and Dt, as it
follows

Pl =
Dl

Dt
l = 1, ..., N (17)

where Pl is the portion of each particle fraction in the total deposit.

2.3.4 Energy budget of the flow

The potential energy inside the lock is turned into kinetic energy after the release of the gate. In the works of Winters
et al. (1995) and Necker et al. (2005) were discussed methods to calculate the temporal evolution of energy budget of
gravity currents. In this work we follow the methodology used by Espath et al. (2014) to calculate the energy budget of
the flow. This energy budget can be derived from the Navier-Stokes and scalar transport equations. The total energy can
be split into kinetic and potential energy, and distinguish the dissipation associated to the strain rate in the macroscopic
advective motion and the dissipation that occurs in the microscopic Stokes flows around the particles.

The kinetic energy, k, is computed by the inner product of velocity field integrated in the entire domain,
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Differentiating Eq. (18) with respect to time and applying Eq. (2) we have
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The expression for total potential energy is given by
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Taking the derivative of this expression with respect to time and applying Eq. (3), we have
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From Equations (19) and (21) we can derive an expression for the time variation of total mechanical energy
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where ε is associated to the turbulent dissipation rate and εst is the dissipation rate associated with loss of energy due to
suspended particles. To compute the energy dissipated after a time t, we use

Ed (t) =

∫ t

0

ε (τ) dτ, (23)
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where Esl is the energy dissipated by effect of suspended particles. Finally, the complete energy equation is

k + Ept + Ed + Est = Et0 , (25)

where Et0 is the initial total energy, which can be get by calculate each term of the equation at t = 0.

2.4 Global Parameters

We performed numerical simulations of particle-laden gravity currents in a lock-exchange configuration with a fixed
Reynolds number of 4000. We consider for the coarse and the fine particle fraction radius of 69 µm and 25 µm, re-
spectively, which are the same values used in the study of Gladstone et al. (1998). We adopted the settling velocities of
us1 = 0.03 and us2 = 0.004, for coarse and fine particle fractions, respectively. We use a computational domain size of
(L1, L2, L3) = (30, 2, 0.1) with a number of grid points of (n1, n2, n3) = (2305, 325, 7). For all cases, the total
simulation time was t = 100 with a time step of ∆t = 6.23 × 10−4. For this paper, we choose two of our numerical
experiments to compare with previous results presented in the literature, for the same initial concentration of coarse and
fine particle of φ1 = 50% and φ2 = 50%, respectively. The first one (#1) the Schmidt number for both particles fraction
was equal to 1. For the second (#2), the Schmidt number of coarse and fine fraction were Sc1 = 3 and Sc2 = 1.
According to Eq. (9), we obtain a ratio of Sc1Sc2

= 3.

3. RESULTS

In this section we describe the results of our simulations in terms of front position and velocity, mass suspended,
deposition rate, deposit profile (in mass) and energy budget.

3.1 Evolution of current front position and velocity

According to Huppert and Simpson (1980) the gravity currents can pass by three states after flow starts. The first
occurs after the gate is removed and the fluid inside the lock flows towards the streamwise direction. At this phase, the
ambient fluid creates a counter-flow to the current motion that retards its movement. During this so-called slumping phase,
the current front moves with constant velocity. This regime may be followed by an inertial phase where the buoyancy
forces are balanced by inertial forces. At this stage, the front velocity is no more constant and starts suffering deceleration.
The final regime is the viscous phase, where the buoyancy forces are balanced by viscous forces.

In Figure 3, the temporal evolution of the front position of the current is plotted, where the gate location is the initial
position. We can observe a good agreement between our results and the reference for the initial time (t < 20). The
difference for t > 20 related to Gladstone et al. (1998) is explained due to the higher Reynolds number (Re ≈ 24000) in
the experimental work. Moreover there is possibility of re-suspension at this Re number. It should be pointed out that the
reference for simulation #1 is the work of Francisco et al. (2017) which uses Sc = 1. On the other hand, up to t ≈ 18, the
front position of simulations #1 and #2 is very similar, suggesting no effect of double mass diffusivity on flow dynamics
in this interval. After this period the front velocity decreases, and a noticeable difference between these two simulations
appears, being the front current of simulation #1 ahead when compared with simulation #2. This situation remains
throughout the simulation.

Figure 4 shows the temporal evolution of front velocity for the two current simulations. Three phases (Cantero et al.,
2007) are observed: (i) an initial almost constant regime, (ii) followed by a state in which the front velocity starts suffering
deceleration, due to particle settling, at a rate of ≈ t−

1
3 and (iii) a final regime where the velocity decrease with a rate of

≈ t−
4
5 . Both simulations show similar velocity until t ≈ 18. When viscous effects start to be appreciable (t > 18), the

deceleration phase starts, thus we can identify the effect of double mass diffusivity on flow dynamics, since, simulation
#2 seems to develop lower velocity (at least for a short period of time) than simulation #1 and this situation persists
until t ≈ 35. Looking back at Eq. (3), one reason this happens is the fact that increasing the Schmidt number reduces the
effect of the diffusivity term in the flow and the convective term gains more importance being the only one promoting the
current movement.

3.2 Suspended mass and sedimentation rate

In Figure 5 the temporal evolution of suspended mass for coarse (mp1) and fine (mp2) particle fractions is plotted.
All curves are normalized by the initial material suspended (mp0). The suspended mass shows a good agreement with
the reference. The suspended mass of coarse particles starts at the initial concentration of 50% followed by a quick drop
reaching values less than 10% of mp0 at t ≈ 20 (Fig. 5a). Moreover, simulations #1 and #2 are very close until t ≈ 40
from which simulation #2 shows a slightly higher amount of coarse particles suspended. For the suspended material
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Figure 3. Time evolution of the front position of the current for simulations #1 and #2 compared with the reference. The
initial position is considered at the gate location.

Figure 4. Time evolution of the front velocity of the current for simulations #1 and #2.

of fine particles, the curves decrease slower when compared to coarse particles. The simulations are very similar until
t ≈ 20, at this point the curve for simulation #2 has a larger decrease when comparing against simulation #1, and
remains lower for the rest of simulation. This suggests a slight impact of the double mass diffusivity in the amount and
particle fraction of suspended mass. This behaviour could help to explain the results on front position and velocity, since
the fine particles are the most responsible for keeping the flow motion and reaching higher distances, due to the coarse
particles have a greater settling velocity depositing more quickly. This is because the fine particles remains for more time
suspended, maintaining the density gradient. This has been demonstrated physically (Gladstone et al., 1998) as well as
numerically (Francisco et al., 2017). Thus, as simulation #1 has more fine particles suspended during the experiment, it
could explain why, after most of the coarse sediments are already deposited, the front position remains ahead if compared
with the simulation #2.

The sedimentation rate gives the history of sediments that leave the computational domain at the bottom. Figure 6
shows the sedimentation rate for coarse and fine particle fraction as a function of time, showing a good agreement between
our results and the reference. Two distinct phases (Francisco et al., 2017) can be identified: in the first phase, the curve
increases proportionally to ≈ t0.4 until it reaches a maximum value around t ≈ 15 (globally, the simulation #2 has higher
sedimentation rate than simulation #1); in the following phase, the curve suffers a sharp decrease at a rate of ≈ t−3.25. In
this last phase, both simulations are similar, but simulation #2 shows lower sedimentation rate in some instants. For the
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Figure 5. Suspended particles as function of time: (a) coarse fraction and (b) fine fraction. All curves are normalized by
the initial mass suspended.

fine particle fraction, two phases can be also identified. However, the sedimentation rate grows proportionally to ≈ t0.75

and decreases at lower rate of ≈ t−1, after it reaches its peak at t ≈ 20. Simulation #2 has substantially higher sediment
rate in the interval between t ≈ 4 and t ≈ 8, and between t ≈ 15 and t ≈ 50. Both simulations show lower sediment
rates when compared with the reference. For the moment the only explanation for this difference is that the reference
simulation is 2D.

Figure 6. Sedimentation rate as a function of time: (a) coarse fraction and (b) fine fraction.

3.3 Deposit mean profile and composition

In Figure 7, the average profiles of deposit are plotted. The curves are normalized by final deposit at t = 100. There is
a reasonable agreement between our results and the previous numerical and physical experiments. The peaks found in the
deposit profile probably are related to the signature imposed by the strong Kelvin-Helmholtz vortexes mainly in quasi-2D
simulations (Francisco et al., 2017). It was observed that the deposit was formed close to the gate, which is common for
this kind of configuration.
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Figure 7. Final deposit profile for bi-disperse lock-exchange. All curves are normalized with the total deposit at the final
time.

Figure 8. Temporal evolution of deposit composition for each particle fraction of simulations #1 and #2.

Figure 9. Temporal evolution of the energy for simulations (a) #1 and (b) #2. All curves are normalized with total initial
energy (Et0 ).

Comparing the deposits of simulations #1 and #2, a difference in the configuration of the deposit, especially in the
position of peaks, is identified. It could be a result of the difference in the temporal evolution of the front position between
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the two simulations and the impact of double mass diffusivity. There is no significant difference between the distance
reached for the two deposits.

In Figure 8 the temporal evolution of the deposit composition of each particle fraction for both simulations is plotted.
Coarse particle concentration increases in the deposit during the beginning of the simulation, this situation persists until
t ≈ 10 when the concentration of fine particle starts growing in the deposit composition. This phenomenon occurs because
the particles with high settling velocity sediments faster while the fine particles remain suspended for more time. As a
consequence of that, the coarse particles should reduce in the composition of deposit along the time (Lucchese, 2018).
At the end of the simulation time, the concentration of both particles approach to the initial concentration in the lock,
what could be reached if simulations were carried out for a very long time. Furthermore, the deposit composition of the
two simulations are very similar for most of the time, which means that the double mass diffusivity does not impact the
deposit composition, at least for the parameters used.

3.4 Energy budget of the flow

Figure 9 shows the evolution of energy budget flow, for simulations #1 and #2, normalized by the total energy at the
beginning of the simulation, observing conservation of the total energy. At the beginning of the simulations, the potential
energy is maximum and after the gate is released, it suffers a drop while the kinetic energy has a fast increase, reaching
its peak around t ≈ 3. The kinetic energy after t ≈ 3 decreases even with the potential energy decreasing. This happens
because the two mechanisms of dissipation, the associated to convection Ed and to drag around the particles Est , grow
in importance along with the time evolution. The kinetic energy at t = 100 for simulations #1 and #2, respectively, are
8.28% and 8.42%, and the value for potential energy are 12.64% and 14.09%, respectively.

Comparing the two mechanisms of dissipation we notice that Ed has more impact in the energy loss. For simulations
#1 and #2 the values of Ed are, respectively, 43.59% and 41.60%, while for Est are 35.35% and 35.76%. It seems that
the double diffusivity (simulation #2) delays the conversion from potential to kinetic energy, since the respective curves
only intercept at t ≈ 45, in contrast to the unique difussitivity case where it occurs at t ≈ 25.

4. CONCLUSION

We performed DNS of bi-disperse particle-laden gravity currents on a lock-exchange configuration with different
values of Schmidt number for each particle fraction, to investigate the impact of double mass diffusivity on flow and
deposit dynamics for a fixed Re number. Two simulations are considered in this study, the first one (#1) with a unique
Schmidt number for the two particle fractions, Sc = 1, while the second (#2) possess the values Sc = 3 and Sc = 1
for coarse and fine particle fractions, respectively. We compared our results with physical and numerical experiments
available in the literature, obtaining a fairly good agreement.

At the beginning of the simulation, the front position increases at a constant rate, with no effect of double mass
diffusivity. At t ≈ 18, when the streamwise movement is slowing down, a difference between the two simulations is
identified, in which the flow with unique Schmidt number remains ahead when comparing with the other simulation. The
time evolution of the front velocities for the two simulations are similar until t ≈ 18, after this time the current front
velocity of simulation #1 is greater than the simulation #2 for the most of the simulation time.

In terms of suspended material, the double mass diffusivity case shows lower fine particles suspended during the flow
evolution. This impacts directly the flow movement because the fine particles are the most responsible for supporting
the current motion. The final deposit agreed with the reference. The deposits has changed the configuration and position
of the peaks for double mass diffusivity case. However, it seems that there is no perceptible effect of double diffusivity
mass in the deposit composition. Finally, for the energy budget, it seems that in the double diffusive case the conversion
from potential to kinetic energy is delayed, since the respective curves only intercept at t ≈ 45, in contrast to the unique
difussitivity case in which it occurs at t ≈ 25.
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