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Abstract. Large Eddy Simulation (LES) is a useful tool in the study of smooth channel flows of high Reynolds number, but
when the domain is large enough computational cost restricts the correct representation of the viscous sublayer. In this
study, we test the use of a one-dimensional stochastic model (ODT) as an alternative to simulate the flow close to the wall
within the LES. This approach comprises the use of one independent ODT (a vertical line) inside each LES grid close to
the wall, driven by the LES at the top and providing the lower boundary condition to the LES (two-way coupling). Results
of mean velocity and total stress for Reτ = 590 and 5200 are similar to Direct Numerical Simulation, and they have the
correct order of magnitude for velocity variances.
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1. INTRODUCTION

Smooth, pressure-driven channel flows correspond to one of the classical problems highly studied in the field of
turbulence. In addition to its relative simplicity in terms of dimensional analysis, combined with many interesting features
due to the wall-blockage effect, channel flows are present in a diverse set of applications in the environment (e.g. rivers
and the atmospheric boundary layer) and industry (e.g. rectangular ducts).

In this study we consider a channel with no lateral walls and with a distance δ from the bottom wall to the free stream
at the top. The flow is fully developed, stationary and horizontally homogeneous, and the mean flow is parallel to the
wall (in the streamwise direction x). Statistics of the flow change only in the vertical direction, y, and the bottom wall is
smooth, i.e., the velocity vector ~u = 〈u, v, w〉 goes to zero at y = 0 (u, v and w correspond to streamwise, vertical and
spanwise velocities, respectively). From the continuity and momentum equations, it can be shown that the total stress

τ(y) ≡ ρν du
dy
− ρu′v′ (1)

varies linearly with y because dτ/dy is constant (Pope, 2000). In Eq. (1) ρ and ν are the fluid density and kinematic vis-
cosity, respectively (both assumed as constants), over bars correspond to Reynolds average, and primes are the fluctuating
part. The total stress is the sum of the viscous stress (first term on the RHS of Eq. (1)) and the Reynolds stress (second
term). Noting that τ(y = δ) = 0 due to the free stream condition with no stress (similarly if considered an axisymetric
flow with another wall at y = 2δ) we have that

τ(y) = τw

(
1− y

δ

)
, (2)

were τw is the shear stress at the wall. Since at the wall u = v = 0, τw = ρν(du/dy)|y=0. A velocity scale known
as friction velocity can be defined from τw, namely uτ ≡ (τw/ρ)1/2, which allows the definition of a friction Reynolds
number Reτ = uτδ/ν. In addition, uτ and ν can be used as viscous (or wall) scales to define nondimensional variables
such as u+ = u/uτ and y+ = yuτ/ν.

Figure 1 shows the statistics of smooth channel flows from Direct Numerical Simulation (DNS, the numerical solution
of the Navier-Stokes equation) with Reτ = 590 (from Moser et al. (1999)) and Reτ = 5200 (from Lee and Moser
(2015)). Notice the linear behavior predicted by Eq. (2) for τ(y) in Fig. 1-(f) (it goes from 1 to 0 when normalized by
uτ ), which is a signature that all assumptions are met by the simulation, including the steady-state condition. In terms
of dimensional analysis, the flow can be divided into two layers (Pope, 2000): (i) the inner layer (y/δ < 0.1) where uτ
and y+ are the dominant scales (white background in Fig. 1-(a), (b), (c)) and (ii) the outer layer (y/δ > 0.1) where ub
and δ are the dominant scales (grey background in Fig. 1-(a), (b), (c)). The inner layer can be further subdivided into
three sublayers: (i) the viscous sublayer (y+ < 5), where the viscous stress dominates over the Reynolds stress and
u+ = y+; (ii) the logarithmic layer (30 < y+ < 200) where the Reynolds stress dominates over the viscous stress and
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u+ = log y+/κ + B; and (iii) the buffer sublayer where both viscous and Reynolds stresses are relevant (see Fig. 1-(c)
for the relative importance of each stress). These equations for the nondimensional mean streamwise velocity (u+) come
from dimensional analysis, and the values of the constants κ = 0.4 and B = 5.2 were obtained experimentally (Pope,
2000).
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Figure 1. Direct Numerical Simulation of smooth channel flows with Reτ = 590 (black lines, from Moser et al. (1999))
and Reτ = 5200 (grey lines, from Lee and Moser (2015)); (a) and (d): mean streamwise velocity, (b) and (e): variances
of streamwise (upper lines), spanwise (middle lines) and vertical (lower lines) velocities, (c) and (f): total (thick lines),
viscous (dotted lines) and Reynolds (thin lines) stresses; (a), (b) and (c) are displayed as a function of y+ = yuτ/ν,
whereas (d), (e) and (f) use y/δ. In (a), (b) and (c) vertical lines separate the viscous, buffer and logarithmic layers (from

left to right); outer layer corresponds to the grey area.

The analysis and equations described above and corroborated by experiments and DNS set the overall picture of
canonical channel flows. Some interesting features can be observed when increasing the Reynolds number of the flow: in
wall units (y+), the inner layer remains the same (same viscous stress in Fig. 1-(c)) and the outer layer increases in length,
presenting a region with higher streamwise velocity (Fig. 1-(a)). Variances peak at the buffer or logarithmic sublayers,
and their values increase with Reτ at all layers except the viscous sublayer (Fig. 1-(b)). When looking at these statistics
as a function of the distance from the wall (y/δ), the important feature to notice is that as Reτ increases, the inner layer is
“pushed” closer to the wall (Fig. 1-(d), (e)).

Simulation of Reτ = 5200 from Lee and Moser (2015) already corresponds to one of the highest Reτ values allowed
by current computational capabilities for DNS, but some applications (such as the atmospheric boundary layer) require
values of Reτ one order of magnitude higher or more. In these situations, an alternative is to use another numerical tool
known as Large Eddy Simulation (LES), in which all variables are filtered for small-scale removal, significantly reducing
the computational cost while maintaining most of the kinetic energy of the flow.

The governing equations of LES are obtained by filtering Navier-Stokes and continuity equations, which (for incom-
pressible flow) corresponds to (Pope, 2000)

∂ũi
∂t

+
∂ũiuj
∂xj

=− 1

ρ

∂p̃

∂xi
+ ν

∂2ũi
∂xjxj

+ Fi, (3)

∂ũi
∂xi

= 0, (4)

where ũi is the filtered velocity field, p̃ is the filtered pressure field and Fi is the mean streamwise pressure forcing
(traditional index notation is used). In order to close this set of equations, the second term on the LHS of Eq. (3) needs to
be rewritten as a function of the resolved velocity ũi and pressure p̃. By defining the residual stress tensor and the residual
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kinetic energy as

τRij ≡ ũiuj − ũiũj , (5)

eR ≡ 1

2
τRii , (6)

it is possible to write

ũiuj = τij +
2

3
eRδij + ũiũj , (7)

where τij is the anisotropic part of the residual stress tensor (τij = τRij − 2eRδij/3), also known as subgrid-scale (SGS)
stress tensor. The final Navier-Stokes equation for LES can be written as (Bou-Zeid et al., 2005)

∂ũi
∂t

+
∂ũiũj
∂xj

= −1

ρ

∂p̃∗

∂xi
+
∂τij
∂xj

+ Fi, (8)

where p̃∗ = p̃ + 2
3ρe

R is a modified pressure. Note that because molecular viscosity can be neglected in the resolved
scales of high Reynolds number flows, it was removed from Eq. (8). The impact of the unsolved part of the flow on the
resolved velocity field is represented by τij , which is the term that needs to be parameterized as a function of the resolved
velocity field. A diverse set of parameterizations, known as SGS models, has been developed for different applications
and numerical approaches, most of them based on the eddy-viscosity and mixing-length assumptions.

When using LES to simulate smooth channel flows, it is possible to adopt a vertically stretched grid so that the first
grid points are within the viscous sublayer, and a no-slip boundary condition can be enforced at the wall (e.g. Lund et al.,
1998; Schlatter et al., 2010). This option, however, restricts the size of the domain, because the number of points to
be used in the vertical direction is limited by the computational cost, the stretching function and the assumptions of the
SGS model used. Another option is to have the lowest LES grid points at the logarithmic region, and to use the log-law
equation for the mean flow in this region (u+ = log y+/κ + B) to relate the instantaneous streamwise velocity at the
lowest grid point to the expected velocity gradient at the wall (used as a Neumann boundary condition). This is done
through the value of uτ , which carries the value of du/dy|y=0 (see prior definitions of u+, uτ and τw). The main issue
with this approach is that the log-law is true for the mean streamwise velocity u+ = u/uτ , but not for the instantaneous
filtered velocity ũ being resolved by the LES. Therefore, errors from this misuse of the log-law are present. Nevertheless,
this method provides reasonable results, and it is widely used in cases in which the size of the domain is too large for the
stretched grid approach (e.g. Bou-Zeid et al., 2005; Brasseur and Wei, 2010).

An alternative to the use of the log-law when the first LES grid points are in the logarithmic sublayer was proposed
by Schmidt et al. (2003). In this approach, a one-dimensional stochastic model is used to simulate the instantaneous
flow field in the viscous and buffer sublayer, two-way coupled with the resolved flow field in the LES. In this study, we
reproduce this method in a different LES code, comparing it again with DNS results of Reτ = 590 by Moser et al. (1999)
and performing a new comparison with the most recent DNS results of Reτ = 5200 by Lee and Moser (2015). Positive
and negative aspects of this method are discussed, and future applications for the model are envisioned.

2. METHODS

2.1 One-dimensional stochastic model

The one-dimensional stochastic model used in this study, known as ODT (One-Dimensional Turbulence model), was
developed by Kerstein (1999) and successfully used as a stand-alone model to simulate different types of turbulent flows,
including homogeneous turbulence, shear layers, buoyancy-driven flows (Kerstein, 1999), mixing-layer and wakes (Ker-
stein et al., 2001), jet diffusion flames (Echekki et al., 2001), the stable atmospheric boundary layer (Kerstein and Wunsch,
2006), particle dispersion in homogeneous flows (Sun et al., 2014) and flow through plant canopies (Freire and Chamecki,
2018). The model corresponds to the one-dimensional diffusion equation of all variables of interest (which in this study
are the three velocity components, but temperature, gas and particle concentration can be included in the same way), i.e.,

∂ui
∂t

= ν
∂2ui
∂y2

+ Fi + stochastic eddies (9)

where stochastic eddies correspond to the effect of three-dimensional turbulence in this one-dimensional field. The
simulation is performed by evolving the diffusion equation in time, and at each time-step a stochastic eddy is selected
from a probability distribution of eddy size and location in the domain. When a stochastic eddy is selected, all variables at
the position y within the eddy are replaced by the value of the same variable at the position M(y). This mapping function
is a model for advection, mixing the variables and creating small-scale fluctuations in such a way that mimics the energy
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cascade of turbulent flows. It is conservative (i.e., it preserves the total amount of the quantity being transported) and it
does not introduce discontinuities. Mathematically, it is defined as

M(y) = yb +


3(y − yb), if yb ≤ y ≤ (yb + l/3),

2l − 3(y − yb), if (yb + l/3) ≤ y ≤ (yb + 2l/3),

3(y − yb)− 2l, if (yb + 2l/3) ≤ y ≤ (yb + l),

y − yb, otherwise,

(10)

where l and yb are the size and bottom position of the eddy, respectively. As described by Kerstein and Wunsch (2006),
the mapping function “takes a line segment, shrinks it to a third of its original length, and then places three copies on the
original domain. The middle copy is reversed, which maintains continuity of advected fields and introduces the rotational
folding effect of turbulent eddy motion.”. In addition to this mixing effect, when a stochastic eddy is selected, a second
term creates redistribution of energy among velocity components, mimicking a pressure-induced tendency toward isotropy
on the flow. The final model for the occurrence of stochastic eddies is

ui(y)→ ui(M(y)) + ci(y −M(y)), (11)

where ci is the amplitude of the energy redistribution (calculated from the flow energy within the eddy). For more details
on its calculation, see Kerstein (1999) and Kerstein et al. (2001).

The final piece of information needed for the ODT is the probability distribution of eddy size and location, λ(l, yb, t),
which also evolves in time with the flow. It is calculated as proportional to the instantaneous amount of kinetic and
potential energy in the flow (through dimensional analysis), adding another physical aspect to the stochastic model. For
example, regions of high shear will have higher probability of having stochastic eddies. A proportionality constant Cλ is
used to regulate the number of eddies for a given amount of energy, effectively setting the turbulence intensity. Another
constant, Zλ, adjusts the damping effect of viscosity, because any eddy with a time scale longer than the viscous time
scale should be prohibited. The values of Cλ and Zλ are the only tunable parameters of the model, which are usually
different for different types of flows, but they are not expected to vary with Reτ . The detailed description of λ and its
mathematical formulation can also be found in Kerstein (1999) and Kerstein et al. (2001).

When used as bottom boundary condition for the LES, an independent ODT model is inserted inside each LES grid
next to the wall. In this case, each ODT corresponds to a vertical line centered at the LES grid, refining the flow field in
the vertical direction from the wall to the top of the grid. The LES velocity field provides a top boundary condition to the
ODT, and the ODT provides the momentum flux across the first and second grid layers as a bottom boundary condition
for the LES, which results in an instantaneous two-way coupling between the models.

2.2 Large Eddy Simulation code

The LES code used in this study solves the filtered Navier-Stokes equation in a staggered grid with fixed size, in
which the first grid points are located in the logarithmic sublayer. The numerical discretization combines a fully dealiased
pseudo-spectral method in the horizontal directions and a second-order centered finite-difference in the vertical direction.
The fully explicit second-order Adams-Bashforth scheme is used for time integration. The SGS model is the planar
averaging, scale invariant dynamic model (Germano et al., 1991). More details of the code can be found in Bou-Zeid
et al. (2005). A constant mean pressure gradient force is imposed in the streamwise direction and horizontal boundary
conditions are periodic, while a stress-free boundary condition is applied at the top of the domain.

2.3 Simulation setup

Two simulations are tested here, corresponding to Reτ = 590 and 5200. Simulation parameters are listed in Tab. 1.
Both simulations were run for 50 eddy turnover times (defined as δ/uτ ), and results presented in next section correspond
to the averaging of the last 15 eddy turnover times.

3. RESULTS

Figure 2 shows the results of flow statistics for the two Reτ tested. After the adjustment of the parameters Cλ and
Zλ (by trial and error), the mean flow is well represented by the model, with ODT providing the velocity field in the
viscous and buffer sublayers in the Reτ = 590 case (Fig. 2-(a)), and in most of the inner layer in the case of Reτ = 5200
(Fig. 2-(d)). The fact that these tunable parameters do not change with Reτ is useful in terms of the applicability of the
model to different studies.

Overall, variances are well represented by the LES in the outer layer; this is also obtained when using wall models
based on the log-law, and it is likely not significantly impacted by the use of the ODT. The variances at the viscous sublayer
are also well represented by the ODT, but ODT results in the buffer and logarithmic sublayers show discrepancies when
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Table 1. Simulation parameters for LES and ODT

Reτ = 590 Reτ = 5200

domain size (X × Y × Z) 2πδ × δ × 2πδ 2πδ × δ × 2πδ
number of grid points (Nx ×Ny ×Nz, NODT ) 32× 16× 32, 32 32× 32× 32, 96
mean pressure gradient force (Fi = 〈(1/ρ)(dp/dx), 0, 0〉) 〈u2τ/δ, 0, 0〉 〈u2τ/δ, 0, 0〉
simulation time step (∆t) 0.0005 δ/uτ 0.0005 δ/uτ
number of simulation time steps (Nt) 100 000 100 000
eddy rate distribution parameters (Cλ, Zλ) 23, 15 23, 15
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Figure 2. Smooth channel flow simulation results from ODT-LES coupling for Reτ = 590 ((a), (b), (c)) and Reτ = 5200
((d), (e), (f)); LES (ODT) results in empty (filled) symbols; grey lines correspond to DNS results; (a) and (d): mean
streamwise velocity, (b) and (e): variances of streamwise (upper lines/symbols), spanwise (middle lines/symbols) and
vertical (lower lines/symbols) velocities, (c) and (f): total (circles), viscous and SGS (squares) and stochastic eddies and

resolved (triangles) stresses.

compared to DNS results (Fig. 2-(b), (e)). Even as a stand-alone model, variances from ODT are usually not correct,
which has been consistently observed for different types of flows (Kerstein et al., 2001; Freire and Chamecki, 2018).
Nevertheless, having an estimate that has the correct order of magnitude can be useful in some applications were an
instantaneous flow field close to the wall is needed.

Finally, stresses are well represented by the ODT-LES coupling. Note in Fig. 2-(c), (f) that the ODT viscous stress
is similar to DNS values, and that the stochastic eddies emulate the Reynolds stress in the viscous and part of the buffer
sublayers. The sum of them gives the correct total stress at these layers, and it provides the value of the stress in the
second LES grid point (which enters as a SGS stress). The total stress in the LES is divided into SGS and resolved parts
(both corresponding to the Reynolds stress), and no viscous stress exists as it is negligible in this part of the domain. As
expected, the total stress matches the linear profile (from theory and DNS) in both ODT and LES parts, indicating a well
developed, stready-state simulation.

4. CONCLUSION

In this study, we tested the use of a one-dimensional stochastic model as an alternative to simulate, in LES, the lowest
part of the inner layer of a smooth channel flow. This approach provides good results for mean velocity and total stress, in
addition to reasonable results (in terms of order of magnitude) for the variances of the flow. Despite the errors in variances,
this option is likely more robust than the use of the log-law as a wall model for the instantaneous resolved velocity, given
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that the latter is an equation defined for the mean flow. The trade-off of this correction, however, comes in a significant
increase in the computational cost of the simulation. Perhaps the application in which the ODT-LES coupling will be
most useful is when the information of the instantaneous flow field very close to the wall is needed in addition to a large
domain (too large for the stretched grid approach), such as studies of particle transport at the surface of the atmospheric
boundary layer under conditions of strong convective flows.
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