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Abstract. Over time, several authors have dedicated themselves to investigating the causes and developing stabilizing
methods for a difficulty that became known as the High Weissenberg Number Problem (HWNP), which consists in nu-
merical instabilities arising from the collapse of numerical schemes applied in the constitutive equation solution for
non-Newtonian fluids. The log-conformation formulation has highlight in the literature and consists of the applica-
tion of the logarithmic transformation to the conformation tensor. Therefore, the aim of the present work is to use the
log-conformation method as code stabilizing technique to investigate the hydrodynamic stability of the two-dimensional
Poiseuille flow for Giesekus fluid by means of Direct Numerical Simulation (DNS) considering high Weissenberg numbers.
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1. INTRODUCTION

The Computational Fluid Dynamics – area of scientific computation that studies computational methods for simulating
phenomena involving motion of fluids – is increasingly used as a tool for modeling and simulating flows that are of
interest in industry. Among the industrial applications is the treatment of non-Newtonian fluid flows. Increasingly,
polymers are replacing other materials, therefore, it is essential that the polymeric product presents a satisfactory mecha-
nical performance during the projected useful life for a given application. One of the main characteristics of polymers is
viscoelasticity, which consists of the presence of viscous and elastic properties at the same time. Various materials used
in industrial applications such as in oil industries, paints and in cosmetic products, behave like viscoelastic fluids.

Laminar flows are always subject to small disturbances that can occur due to several factors, such as structural vibra-
tion, surface roughness, noise, external turbulence, among others. If these disturbances are not dampened, the laminar
flow undergoes a transition to another more complex state, but not necessarily a state turbulent (Souza et al., 2005). This
process, known as laminar-turbulent transition, is extremely complex and is not completely understood, mainly for non-
Newtonian fluid flows. The analysis of hydrodynamic stability is performed with the objective of forecast changes that
occur in the flow of a fluid in laminar regime and that are potentially capable to lead it to the turbulent regime, and the
mechanisms of hydrodynamic instability have an important role in this transition process.

One of the dimensionless parameters that characterize the flow of viscoelastic fluids is the Weissenberg number,
which is the ratio between the elastic relaxation time and the time associated with the local deformation of the fluid
time. However, an difficult usually found in the simulation of viscoelastic flows, consists in the loss of convergence from
a critical value of the Weissenberg number. This limitation became known as the High Weissenberg Number Problem
(HWNP). Although little understood, one of the causes of HWNP from a numerical point of view, is related to the loss of
positivity of the tensors. According to Dupret and Marchal (1986), the evolutionary character of a system is a requirement
that must be maintained, regardless of the model considered.

An approach that emerged in the attempt to solve the HWNP formulates the model from the conformation tensor due
to its properties of being symmetrical and positive defined (Hulsen, 1988). The main technique for the solution of the
HWNP in Computational Rheology, known as log-conformation, was presented by Fattal and Kupferman (2004, 2005)
and consists of reformulate the constitutive laws that describe the non-Newtonian behavior in terms of the logarithm of
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the conformation tensor.
In this sense, the objective of this work is to present the log-conformation technique for HWNP stabilization. Consi-

dering the two-dimensional Poiseuille flow of Giesekus viscoelastic fluid, the stability analysis for flows will be performed
using the Direct Numerical Simulation (DNS) technique and a numerical study of the log-conformation formulation
(Fattal and Kupferman, 2004) was carried out in order to demonstrate the relevance of this methodology in the solution of
simulated flows with a high Weissenberg number.

2. MATHEMATICAL FORMULATION

The flow is assumed to be unsteady, non-Newtonian, two-dimensional and incompressible, without body forces. The
conservation of mass (continuity) and conservation of momentum equations governing the flow, in the dimensionless
form, are given by

∇ · u = 0, (1)

∂u
∂t

+∇ · (uu) = −∇p+
β

Re
∇2u +∇ · T, (2)

where u denotes the velocity field, t is the time, p is the pressure and T is the non-Newtonian extra-stress tensor (symme-

tric), given by T =

[
T xx T xy

T xy T yy

]
.

The dimensionless parameter Re = ρUL/η0 is associated with the Reynolds number, where L and U denote length
and velocity scales respectively, and ρ is the fluid density. The amount of Newtonian solvent is controlled by the dimen-
sionless solvent viscosity coefficient β = ηs/η0, where η0 = ηs + ηp denotes the total shear viscosity, being ηs and ηp
the Newtonian solvent and polymeric viscosities, respectively.

In this paper we worked with viscoelastic fluid flow governed by the non-linear Giesekus constitutive equation
(Giesekus, 1982), that is given by

T +Wi
O
T + αG

WiRe

1− β
(T · T) =

1− β
Re

(∇u +∇u>), (3)

where αG is the mobility parameter that regulates the shear thinning behavior of the fluid (0 ≤ αG ≤ 1), T · T is a tensor

product and
O
T is the upper-convected derivative. The dimenssionless parameter Wi = λU/L is called Weissenberg

number, being λ the relaxation-time of the fluid.

2.1 Log-Conformation Transformation

An alternative way to describe viscoelastic models uses the tensor conformation A. This tensor is symmetric and
positive definite and its constitutive equation can be written as (Martins et al., 2015)

∂A
∂t

+∇ · (uA) = ∇uA + A∇u> +
1

Wi
f(A)P (A), (4)

being the ratio between the extra-stress tensor T and A given by T = ξ(A − I), where ξ is a scalar defined as ξ =
(1− β)/ReWi.

The scalar function f(A) and the tensor P (A), that depends of A, are defined according to the model used. In
particular, for the Giesekus model f(A) = 1 and P (A) = (I− A)[I + αG(A− I)].

Defining Ψ = ln(A) as the logarithm of the tensor conformation A, then eΨ = A. After all the algebraic manipula-
tions involved in the construction of the method, an evolution equation for the logarithmic transformation applied to the
conformation tensor is finally obtained

∂Ψ

∂t
+∇ · (uΨ) = (ΩΨ−ΨΩ) + 2B +

f(eΨ)

Wi
e−ΨP (eΨ), (5)

where the tensor B, which commutes with A (Afonso et al., 2012), arises from a reformulation of the velocity gradient
and its transpose, performed by Fattal and Kupferman (2005).

3. DIRECT NUMERICAL SIMULATION

In order to simplify the problem and eliminate the pressure treatment in the momentum equations, we chose the
vorticity-velocity formulation (Brandi et al., 2017). Then, the two-dimensional vorticity ωz is defined by
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ωz =
∂u

∂y
− ∂v

∂x
. (6)

Applying such formulation, therefore, the problem is to solve the system composed by Eqs. (7) – (12),

∂u

∂x
+
∂v

∂y
= 0, (7)

∂2v

∂x2
+
∂2v

∂y2
=
∂ωz

∂x
, (8)

∂ωz

∂t
+
∂ωz

∂x
u+

∂ωz

∂y
v =

β

Re

[
∂2ωz

∂x2
+
∂2ωz

∂y2

]
− ∂2T xy

∂x2
− ∂2T yy

∂x∂y
+
∂2T xx

∂y∂x
+
∂2T xy

∂y2
, (9)

T xx +Wi

(
∂T xx

∂t
+
u∂T xx

∂x
+
v∂T xx

∂y
− 2T xx ∂u

∂x
− 2T xy ∂u

∂y

)
+ αG

WiRe

1− β

(
T xx2

+ T xy2
)

= 2
1− β
Re

∂u

∂x
, (10)

T xy+Wi

(
∂T xy

∂t
+
u∂T xy

∂x
+
v∂T xy

∂y
−T xx ∂v

∂x
−T yy ∂u

∂y

)
+αG

WiRe

1− β
(T xy (T xx + T yy)) =

1− β
Re

(
∂v

∂x
+
∂u

∂y

)
,

(11)

T yy +Wi

(
∂T yy

∂t
+
u∂T yy

∂x
+
v∂T yy

∂y
− 2T xy ∂v

∂x
− 2T yy ∂v

∂y

)
+ αG

WiRe

1− β

(
T xy2

+ T yy2
)

= 2
1− β
Re

∂v

∂y
, (12)

where Eq. (8) is the Poisson equation for the v velocity component, obtained deriving Eq. (6) with respect to x. Equation
(9) is obtained deriving the momentum equation in direction y with respect to x and subtracting the derivative of the
momentum equation in direction x with respect to y.

3.1 Base Flow

In this paper we study viscoelastic plane Poiseuille flow where x and y represent the streamwise and wall-normal
directions. To calculate the base flow, it is assumed that all variables are dependent only on the y axis, except for the
pressure whose gradient is constant in the x direction. The domain in the y direction is comprised between [−1, 1].

However, considering the Giesekus model, the system of equations that derives from these hypotheses does not have a
complete analytical solution available in the literature. Therefore, in this work, the base flow was generated numerically
by two-dimensional DNS code, without disturbances, and the simulations performed until the flow reached the steady
state. Also, the variables for the base flow were taken in the middle of the channel.

4. NUMERICAL METHOD

The system of Eqs. (7) – (12) is solved numerically in the domain as shown in Fig. 1. The calculations are performed
on an orthogonal uniform grid, parallel to the wall. The fluid enters the computational domain at x = x0 and exits at the
outflow boundary x = xmax. In this work, the infinitesimal disturbances behavior in the flow is investigated. Unsteady
disturbances are introduced through suction and blowing of mass in the wall in the region between x1 and x2. In the initial
time t = 0 the flow has no disturbances. After an interval, more specifically at time t+ δt, disturbances are inserted in a
disturbances trip near the inflow, through the imposition of velocity v:

v = Af(x)sin(ωtt), x1 < x < x2, (13)

and

v = 0, x ≤ x1 or x ≥ x2, (14)

where A is the parameter used to adjust the disturbance amplitude, f(x) is a 9th-order function, ωt is a disturbance time
frequency and the points x1 and x2 are the extreme limits of the strip where the disturbance is introduced.
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Figure 1: Definition of the computational domain for Poiseuille flow.

In the region located between x0 and x1 and x3 and x4 a buffer domain technique is implemented in order to avoid
wave reflections from the inflow and outflow boundaries, respectively.

In the numerical method the time derivatives in the vorticity transport and the components of the non-Newtonian
extra-stress tensor equations are discretized with a classical four step fourth-order Runge-Kutta integration scheme. The
spatial derivatives are calculated using a high-order compact finite difference-schemes. The use of the adopted compact
finite differences to estimate the first and second spatial derivatives requires the solution of tridiagonal linear systems.
The numerical derivative approximations have 5th- and 6th-order of accuracy. The Poisson equation is solved using a
multigrid Full Approximation Scheme (FAS).

Finally, with the purpose of eliminating numerical (spurious) oscillations, a filter is applied after the last Runge-Kutta
step. This filter is applied in the vorticity component in the streamwise direction and in the non-Newtonian extra-stress
tensor components.

We solve the system composed by Eqs. (7) – (12) numerically by the application of the following algorithm:
Step 1: Apply a step of the time integrator for the vorticity and the non-Newtonian extra-stress tensor.
Step 2: Apply the functions responsible for the damping and relaminarization zones.
Step 3: Introduce the suction and injection disturbances into the walls.
Step 4: Calculate the right side of the Poisson equation, given by Eq. (8).
Step 5: Calculate the v velocity by solving the Poisson equation [Eq. (8)].
Step 6: Calculate the value of u velocity through Eq. (7).
Step 7: Calculate the ωz vorticity through Eq. (9).
Step 8: Calculate the components of the non-Newtonian extra-stress tensor through Eqs. (10) – (12).
Step 9: Update the vorticity value ωz and the components of the non-Newtonian extra-stress tensor at the walls.
Step 10: Apply the filter after the last sub-step of the time integrator.
The numerical simulation finishes when the desired wall clock time is reached.

5. CODE VERIFICATION

The verification test in this work occurs for a DNS code that simulates the two-dimensional, incompressible and
isothermal Poiseuille problem, considering the viscoelastic fluid of the Giesekus model, and the log-conformation formu-
lation as a stabilizing technique for simulations with the high Weissenberg number.

Numerical simulations were performed in order to compare the base flow generated numerically using the DNS tech-
nique considering αG = 0 in Eq. (3) that represents the Giesekus model, with the flow analytical solution under the same
conditions considering the Oldroyd-B. This is valid, because when αG = 0 the equation of the Giesekus model is reduced
to the Oldroyd-B model.

The parameters adopted for numerical simulation of the verification test were: the number of points in the streamwise
and wall-normal directions are imax = 9049 and jmax = 249, respectively; the distance between two consecutive points
in the x and y directions are dx = 2π/(16αr) and dy = 2/(jmax − 1), respectively, where αr is the real part of the
wavenumber; the time steps per wave period are 248.

Figure 2 shows the comparison between the analytical solution of Oldroyd-B fluid and the numerical solution obtained
using a DNS technique for Giesekus fluid considering αG = 0. In this figure was performed three simulations, considering
Re = 2000; 4000 and 7000, β = 0.25; 0.50 and 0.50, and Wi = 10; 15 and 20.

Figure 2 is performed to verify the behavior of T xx and T xy non-Newtonian tensors and it is possible to notice that
the behavior both formulations are in agreement.
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Figure 2: Numerical solutions obtained at the middle of the channel for Giesekus and Oldroyd-B fluids flows using
different parameters.

6. RESULTS

Different numerical simulations are presented to verify the effect that the application of the log-conformation trans-
formation produces as a HWNP stabilizing technique in a Poiseuille flow considering the Giesekus viscoelastic fluid.
Variations of the constant β are considered (β = 0.25; 0.50 and 0.75) in comparison with the Newtonian fluid, for
Re = 2000, αG = 0.15 (Fig. 3); 0.30 (Fig. 4) and 0.45 (Fig. 5) and variations of Wi, such as Wi = 5; 20; 80 and 120.
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Figure 3: Maximum streamwise velocity disturbance development in the streamwise direction for different β values,
considering Re = 2000, αG = 0.15 and: (a) Wi = 5; (b) Wi = 20; (c) Wi = 80 and (d) Wi = 120.
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The parameters adopted in DNS simulations carried out here were: the number of points in the streamwise and wall-
normal directions are imax = 505 and jmax = 249, respectively; the distance between two consecutive points in the x
and y-directions are dx = 2π/(16αr) and dy = 2/(jmax − 1), where αr is the real part of the wavenumber. Also, was
adopted 128 time steps per wave period, disturbance frequency ωt = 0.2 and the parameter A to adjust the amplitude of
the Tollmien-Schlichting waves was 1× 10−4.
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Figure 4: Maximum streamwise velocity disturbance development in the streamwise direction for different β values,
considering Re = 2000, αG = 0.30 and: (a) Wi = 5; (b) Wi = 20; (c) Wi = 80 and (d) Wi = 120.

Note that for higher Weissenberg numbers, the curves become less decreasing. This effect is more visible when β is
lower, that is, when there is a fluid more distant from the Newtonian fluid. In these cases, in particular, for β = 0.25,
increases in Wi numbers cause loss of flow stability, generating neutral cases (Fig. 3(c), 3(d), 4(c), 4(d), 5(c), 5(d)). In
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Figure 5: Maximum streamwise velocity disturbance development in the streamwise direction for different β values,
considering Re = 2000, αG = 0.45 and: (a) Wi = 5; (b) Wi = 20; (c) Wi = 80 and (d) Wi = 120.

contrast, the most stable cases are noticed when β = 0.75.
In addition, it can see that the parameter αG also influences the flow stability, because as its value decreases, more

stable flows are obtained, i.e., the disturbances are more dampened. This can be seen best when the Wi number is smaller.
Also, among the simulated cases, non-Newtonian fluids are always less stable than Newtonian fluids, although instability
has not occurred. In addition, for the lowest β values, as Weissenberg numbers increases, the flow becomes less stable.

The positivity of the conformation tensor is a characteristic that must be preserved throughout the time evolution of the
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Figure 6: Temporal evolution of the minimum determinant of the conformation tensor for Re = 2000, αG = 0.15; 0.45,
β = 0.25; 0.75 and varying Wi.
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constitutive equation and it is necessary in order to prevent instabilities related to HWNP. In their work, Chen et al. (2013)
examines the positivity of the conformation tensor by monitoring the sign of its determinant. If the matrix is initiated
definite positive, then the first sign change of any of the eigenvalues will result in a negative determinant. Considering
the log-conformation technique, setting Re = 2000, αG = 0.15 and 0.45, β = 0.25 and 0.75, and varying Wi = 5; 20
and 80, the determinant of conformation tensor |A| is shown in Figure 6. This way, it is possible to notice that the
log-conformation formulation preserved |A| always greater than zero, that is, there was never a loss of positivity in this
matrix.

According to Hulsen (1988), the positivity of the conformation tensor is ensured if the determinant of this tensor,
positive initiate, satisfies |A| ≥ 1. In fact, in all cases |A| ≈ 1, confirming the results previously presented for flow
stability analysis using log-conformation as a strategy to stabilize the HWNP.

7. CONCLUSIONS

In present paper, the log-conformation formulation for stabilization of the HWNP is presented. Considering the two-
dimensional Poiseuille flow of Giesekus viscoelastic fluid, the stability analysis for flows was performed using the Direct
Numerical Simulation (DNS) technique and the governing equations are written in a vorticity-velocity formulation.

In order to evaluate the maximum amplification rates, different dimensionless parameter values were tested for Newto-
nian and non-Newtonian fluid flows, with particular attention to Weissenberg number and the parameter β, which controls
the Newtonian contribution of the fluid.

In addition, an analysis of the minimum determinant value of the conformation tensor was carried out for some
particular cases, where it was possible to verify that the values obtained are satisfactory, according to the literature,
ensuring that the results referring the stability analysis are consistent.
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