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Abstract. The classification of flow distributions in various patterns is very important for the understanding gas-liquid 

two-phase flow. Initially flow regimes were defined according to visual observations, which depended on operator 

interpretation; which is highly subjective. There are currently several objective classification techniques available such 

as pressure signal analysis, which require simple and robust sensors. The pressure signals corresponding to different 

biphasic flows present statistical characteristics that can objectively determine flow patterns. The purpose of this study 

is to identify horizontal flow patterns for pipes using a classification rule based on pressure signal’s characteristics. 

Twelve quantitative parameters were extracted from the pressure signals resulting from an experimental study. The 

signals were classified in intermittent and stratified flows with smooth and wavy subcategory. Classification rules were 

based on parameter thresholding. The best rule for stratified/intermittent flow classification achieved 91.16% efficiency 

for validation data extracted from the experimental unit and 95% efficiency using literature data acquired with different 

operators, phase velocities and research facilities. The classification rule showed to be a good alternative to blindly 

diagnose the flow regime based on data from pressure sensors, which are devices that are relatively easy to install, have 

low cost and are not are intrusive. 

 

Keywords: Two-phase flows, gas-liquid flow, flow pattern classification. 

 

1. INTRODUCTION 

 

Gas-liquid flow presents different spatial distribution of the phases known as flow patterns. These flow patterns bring 

about numerous possibilities for the interfacial structures in time and space in a given pipe and can be complex with 

stochastic motion of the phases and intensive fluctuations of local variables (Drahoš and Čermák, 1989). They are result 

of several parameters that govern the system, such as: gas and liquid flow rates; geometric variables like the tube diameter 

and angle of inclination; and physical properties of the phases, as the specific masses of gas and liquid, viscosity and 

surface tension (Mostafa Ghiaasiaan, 2007; Shoham, 2006). The understanding of how phases are distributed and how 

the behavior of a multiphase system relates to this structure is the central issue in the development of a scientific approach 

of the gas-liquid flow, since parameters as pressure drop, void fractions, heat transfer rates, mass transfer rates, interfacial 

stability, residence time distribution, rates of reaction, pressure oscillations, and all other factors behave differently as the 

flow pattern changes (Rouhani and Sohal, 1983; Taitel and Dukler, 1976; Hanratty et al., 2003). 

Different flow pattern maps for two-phase flow have been developed over the years as predictive tools. These maps 

are based on phase velocities or fluxes, quantification of the homogenous model of a two-phase flow and parameters that 

include physical properties of the phases (Troniewski and Ulbrich, 1984). They were made mainly for vertical and 

horizontal pipe orientations but some of them are for inclined pipes (Baker, 1953; Barnea et al., 1982; Golan and Stenning, 

1969; Hewitt et al., 1986; Hewitt and Roberts, 1969; Mandhane et al., 1974; Oshinowo and Charles, 1974; Spedding and 

Nguyen, 1980; Taitel et al., 1980; Taitel and Dukler, 1976; Weisman et al., 1979). The most widely used flow pattern 
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maps mainly represent flow conditions fully developed in tubes with a uniform cross section and are not very accurate in 

short flow passages (Mostafa Ghiaasiaan, 2007). Many authors report different names for the same flow patterns. In 

horizontal pipes, the flow regime that occurs is classified into four groups: stratified (smooth and wavy), intermittent 

(plug or elongated bubble, and slug), annular, and bubbly. 

Initially the flow regimes were defined according to visual observations, which depended on operator interpretation 

making the technique highly subjective. Although there are already techniques such as high-speed camera viewing and 

image processing that reduce subjectivity, objective and non-invasive or minimally intrusive techniques are of great 

interest for industry. An example of these techniques is the analysis of pressure signals because the required sensors are 

simple and robust and the pressure fluctuations resulting from the passage of different two-phase structures have 

interesting statistical characteristics that can be used for the objective determination of flow patterns (Drahoš et al., 1991). 

In addition to pressure, another common parameter related to the flow pattern is the void fraction, which is the 

relationship between the area occupied by the gas and the total area of the cross section. According to Drahos and Cermak 

(1989), in vertical pipe flow we can get a close relationship between pressure and void fraction but for horizontal flow 

this is not so direct and another approach is necessary. However, several authors used pressure signals to identify flow 

patterns in horizontal pipe flow. Table 1 shows the main authors who used pressure data to characterize gas-liquid flow 

in horizontal pipes. 

 

Table 1 – Summary of studies on flow patterns identification using pressure signals and a horizontal flow configuration. 

 

Author (year of publication) Diameter (mm) Phases Statistical characteristics 

Hubbard and Dukler (1966) 38.1 Air-water PSD 

Weisman et al. (1979) 12; 25; 51 Air-water Time series, amplitude and frequency 

Lin and Hanratty (1987 a;b) 25.4 Air-water Cross-correlation 

Drahos et al. (1987) 50 Air-water Discriminants based on PDF and PSD 

França et al. (1991) 19 Air-water PDF, PSD and fractal techniques 

Cai et al. (1994) 50 Air-water Kohonen self-organizing map 

Drahos et al. (1996) 50 Air - water Chaotic time series analysis 

Wu et al. (2001) 40 Oil-gas-water Wavelet transform, fractals and ANN 

Ding et al. (2007) 15; 25 and 40 Air - water Hilbert-Huang transform 

Santoso et al./ (2012) 24 Air-water PSD and ANN 

 

Hubbard and Dukler (1966) were the first researchers to analyze pressure fluctuations to try to identify flow patterns 

in horizontal air-water flow. They developed a method to determine the flow pattern from the Power Spectral Density 

(PSD) analysis of wall pressure fluctuations. Also based on pressure fluctuations, Weisman et al. (1979) developed of a 

simple quantitative method for distinguishing between flow patterns in terms of frequency and amplitude. In another 

approach, Lin and Hanratty (1987a, b) used local pressure data at two different locations instead of pressure drop over a 

short distance. They used techniques based on the cross-correlation of pressure signals and showed that the transition to 

a slug condition can be sharply defined. 

Drahos et al. (1987) performed a statistical analysis of the wall pressure fluctuations. They suggested ways to detect 

flow patterns based on quantifying the information contained in the probability density function (PDF) and the PSD 

frequency domains. França et al. (1991) also calculated a PDF and PSD of pressure signals and used fractal techniques in 

an attempt to classify the various flow regimes. Although they noted that PSD and PDF might not be the most appropriate 

parameters for this identification, fractal techniques proved to be a promising way to objectively classify flow patterns. 

In 1994, Cai et al. applied a Kohonen self-organizing neural network to identify flow regimes. The neural network was 

trained with stochastic features derived from absolute pressure signals such as standard deviation, coefficient of skewness 

and kurtosis in the amplitude domain and linear prediction coefficients and prediction residual error in the frequency 

domain. Drahos et al. (1996) applied methods of deterministic chaos analysis on the wall pressure fluctuations to 

differentiate between slug and plug flows. Wu et al (2001) analyzed the pressure signals of a three-phase oil-gas-water 

flow however, for the recognition of the regimes; the authors simplified the flow to two-phase flow. The pressure data 

was processed with wavelet theory to eliminate noise and then the characteristic vectors of various flow regimes were 

obtained with fractal theory. These vectors were selected as the input stimuli of a neural network that proved to be a 

highly accurate and fast technique for flow pattern identification. Ding et al. (2007) applied Hilbert-Huang Transform 

(HHT) for the dynamic characterization of gas–liquid two-phase flow using a direct relationship between the signal energy 

distribution and the corresponding flow pattern. 

Lastly, as in previous studies performed by Cai et al. (1994) and Wu et al. (2001), Santoso et al. (2012) also used an 

artificial neural network to identify the flow patterns. In this work, the authors used a statistical analysis of PSD to quantify 

the characteristics of the pressure signals at different conditions and train the neural network. The accuracy of the 

identification was 100% to stratified, 100% to plug and 98% to slug flow. 
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According to earlier works, pressure signals show random fluctuations containing some typical stochastic information 

about the flow characteristics. This information needs to be quantified and the way it is influenced by the flow regime 

must be analyzed to allow a proper identification of flow patterns. 

The objective of our study is to present and evaluate a method of identifying the flow patterns in short horizontal 

pipes using a classification rule constructed with a quantitative parameter extracted from differential pressure signals. 

 

2. MATERIALS AND METHODS 

 

2.1 Experimental unit 

 

A schematic representation of the experimental unit used in this work is showed in Fig. 1. The horizontal test section 

is made of a transparent acrylic tube with inner diameter (D) of 0.074 m and total length (L) of seven meters (L/D  95). 

Geometric variations in the mixing section (gas and liquid inlets) and in the pipe’s outlet were applied to verify the 

generalization of the classification rule in our experimental facility. Atmospheric air and tap water were used as process 

fluids. The water was injected by a centrifugal pump (Bombetec model BTM-30) coupled to a 2 CV engine (from WEG®) 

and the air was supplied by a radial compressor (Ibram model CJ4) coupled to a 4 CV engine (from WEG®). 

The water and airflow rates were measured by a Venturi meter and orifice plate, respectively. After the experiment, 

air and water were separated in a gravitational separation tank where the air was exhausted into the atmosphere and the 

water returns to a reservoir tank. 

 

 
 

Figure 1 – Schematic representation of the experimental facility 

 

Pressure data was acquired with three differential sensors – Rücken model RTBP-420-DIF with a 0 to 10 kPa 

measuring range – installed in the horizontal test section. For the analysis of flow development along the pipe the pressure 

sensors 1, 2 and 3 were respectively installed at 6.8 m (L/D = 65), 5.8 m (L/D = 78.4) and 4.8 m (L/D = 92) from the 

mixing section. These sensors modulate their pressure range into a 4 to 20 mA linear analog output signal that was 

acquired at a 1 kHz sampling rate with a USB-6000 National Instruments® board and a virtual instrument developed using 

LabVIEW® software. 

 

2.2 Experimental data acquisition 

 

The experiments were carried using the superficial phase velocities shown in Tab. 2, for all the possible inlet/outlet 

geometric configurations of our experimental unit. 

To ensure repeatability of the data, each experiment was repeated three times and data was acquired always with the 

following steps:  

 Step 1 – adjust the air supply flow rate; 

 Step 2 – adjust the water supply flow rate; 

 Step 3 – wait a period of five minutes to ensure the superficial velocities of both phases are stable; 

 Step 4 – acquire data for approximately 180 seconds; 

 Step 5 – turn off the air and water supply to drain out the pipe. 
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Table 2 – Superficial phase velocities used on the experiments. 

 

Experiment number Liquid superficial velocity (m/s) Gas superficial velocity (m/s) 

1 0.10   1.00 

2 0.10   5.50 

3 0.10 10.00 

4 0.55   1.00 

5 0.55   5.50 

6 0.55 10.00 

7 1.00   1.00 

8 1.00   5.50 

9 1.00 10.00 

 

We observed that the pressure signals had noise from environment electromagnetic interference and due to sensor 

sensibility. The noisy data was removed using a digital Butterworth low pass fourth order filter, with unit gain and cutoff 

frequency of 15 Hz. Another digital filter, a second order notch with unit gain, cutoff frequency of 0 Hz and bandwidth 

of 0.5 Hz, was also used to remove the signal’s offset. This second filter was applied because the quantitative analysis we 

performed is focused on the different baseline fluctuations of the pressure signals. 

The experimental signals were divided into 30 seconds segments and the identified flow patterns were randomly 

separated into groups of data according to the inlet/outlet geometry adopted in the experiments, according Tab. 3. The 

flow patterns were visually identified based on its specific characteristics described in the established literature on gas-

liquid flow (Rouhani and Sohal, 1983; Spedding and Spence, 1993). 

The training (TRN) dataset was used to create the classification rules while the verification and validation datasets 

were used to evaluate the rule’s performance. The same operator performed the experiments from training and validation 

datasets and a different operator used the same experimental unit to acquire the verification dataset signals. 

 

Table 3 – Number of 30 s signal segments contained in the datasets used for flow pattern classification. 

 

Datasets for flow classification Inlet Outlet 
Stratified 

smooth flow 

Stratified 

wavy flow 
Slug flow Total 

Training (TRN) 1 Without curve 55 signals 18 signals 83 signals 156 signals 

Verification (VER) 1 Without curve 73 signals 24 signals 125 signals 222 signals 

Validation 1 (VLD_1) 1 With 90° curve 18 signals 55 signals 71 signals 144 signals 

Validation 2 (VLD_2) 2 Without curve 54 signals 18 signals 81 signals 153 signals 

Validation 3 (VLD_3) 2 With 90° curve 19 signals 57 signals 71 signals 147 signals 

Validation 4 (VLD_4) 3 Without curve 18 signals 37 signals 95 signals 150 signals 

Validation 5 (VLD_5) 3 With 90° curve 18 signals 36 signals 88 signals 142 signals 

  Total: 255 signals 245 signals 614 signals 1,114 signals 

 

2.3 Flow classification 

 

After all data was collected, segmented, filtered and sorted, an algorithm extracted the quantitative parameters used 

to classify flow regimes. The following 12 parameters related to the signal’s morphology were determined using a 

MATLAB® algorithm: 

 AmaxS: Maximum amplitude of the unfiltered signal; 

 AmaxC: Maximum amplitude of the filtered signal; 

 AmedS: Average amplitude of the unfiltered signal; 

 Freq: Prominent frequency of the signal’s PSD; 

 Freq+AmaxC: Sum of the prominent frequency and maximum amplitude of the filtered signal; 

 Freq+AmaxS: Sum of the prominent frequency and maximum amplitude of the unfiltered signal; 

 Freq+AmedS: Sum of the prominent frequency and average amplitude of the unfiltered signal; 

 Entrp_L: Logarithmic entropy; 

 R_AmpS: Amplitude range of the unfiltered signal; 

 R_AmpC: Amplitude range of the filtered signal; 

 Freq+R_AmpS: Sum of the prominent frequency and the amplitude range of the unfiltered signal; 

 Freq+R_AmpC: Sum of the prominent frequency and the amplitude range of the filtered signal. 
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The flow classification was performed by simply thresholding parameter values and creating a classification rule with 

an “if … then … else” structure: if parameter_value is less than threshold_value then the flow pattern is X, else the flow 

pattern is Y. 

The formulation of the rules started with an exploratory analysis in which the parameter mean value, with its 95% 

confidence interval, was determined for the three flow patterns observed in the training group (Tab. 3). During this 

analysis, it was observed that all the parameters had intersecting confidence interval values between the three flow 

patterns. 

However, this behavior was the exact opposite when analyzing the intervals between only stratified and intermittent 

flows. Consequently, the classification was divided in two parts: first, each signal was classified as stratified or 

intermittent and then the stratified patterns were classified as either smooth or wavy. 

For each parameter, the flow pattern that had the lower mean value was used as the base of the classification rule. 

For example, if AmaxC’s mean value for intermittent flow was lower than the mean value for stratified flow, the 

classification rule would be: if AmaxC is less than threshold_value then the flow pattern is intermittent, else the flow 

pattern is stratified. 

The threshold value was determined by scanning the full value range of each parameter, i.e. from the minimal to the 

maximal value observed in the data from the training group. All the possible thresholds were applied to the rules and the 

one that generated the highest classification efficiency was selected. 

After all the rules were created for intermittent/stratified and smooth/wavy flow classification using the training 

dataset these same rules where applied to the remaining datasets for verification and validation of the rules. 

Verification data came from the same geometry as the training group, i.e. inlet 1 and outlet without curve, and was 

extracted from experiments performed by a different operator. Validation data was acquired with different inlet and outlet 

geometries to check the rule’s generalization. 

The performance of the rules was based in its average efficiency and standard deviation values for the validation data. 

Therefore, the best rule was the one with the highest mean efficiency and lower standard deviation.  

A final test was performed using data from studies that analyzed pressure signals from horizontal two-phase flow and 

reported values of the same parameter we found to be the most efficient for quantitative flow classification. 

 

3. RESULTS AND DISCUSSION 

 

Analyzing the flow development, we found that the data from sensor 2 would be the best one for quantitative flow 

classification because the parameters extracted from the signals acquired at this location (5.8 m) proved to be more stable 

in a preliminary analysis. 

The formulation of the rules started with an assessment of the mean value and its 95% confidence interval for the 

proposed 12 parameters. Once we established which flow pattern had the smallest average, the next step was the definition 

of the threshold for classification. The determination of this value was the result of a full range sweep for each parameter 

and identification of which threshold provided the best separation between the two flow patterns. 

After examining the parameters and determining the threshold values for the signals with stratified and intermittent 

flows, the following rules were created: 

 If AmaxS <= 1,897.71 then stratified flow, else intermittent flow. 

 If AmaxC <= 255.27 then stratified flow, else intermittent flow. 

 If AmedS <= 699.00 then intermittent flow, else stratified flow. 

 If Freq <= 1.84 then intermittent flow, else stratified flow. 

 If Freq+AmaxC <= 268.84 then stratified flow, else intermittent flow. 

 If Freq+AmaxS <= 1910.91 then stratified flow, else intermittent flow. 

 If Freq+AmedS <= 275.55 then stratified flow, else intermittent flow. 

 If Entrp_L <= 161,838.72 then stratified flow, else intermittent flow. 

 If R_AmpS <= 2812.70 then stratified flow, else intermittent flow. 

 If R_AmpC <= 513.38 then stratified flow, else intermittent flow. 

 If Freq+R_AmpS <= 2824.90 then stratified flow, else intermittent flow. 

 If Freq+R_AmpC <= 526.36 then stratified flow, else intermittent flow. 

 

The same assessment for the signals with stratified smooth and wavy flows resulted in following ten rules of stratified 

flow classification: 

 If AmaxS <= 1,166.46 then wavy flow, else smooth flow. 

 If AmaxC <= 118.19 then wavy flow, else smooth flow. 

 If AmedS <= 102.03 then wavy flow, else smooth flow. 

 If Freq <= 1.00 then wavy flow, else smooth flow. 

 If Freq+AmaxC <= 123.37 then wavy flow, else smooth flow. 

 If Freq+AmaxS <= 1,177.63 then wavy flow, else smooth flow. 
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 If Freq+AmedS <= 34.00 then wavy flow, else smooth flow. 

 If Entrp_L <= 16,1785.00 then smooth flow, else wavy flow. 

 If R_AmpC <= 245.16 then wavy flow, else smooth flow. 

 If Freq+R_AmpC <= 251.52 then wavy flow, else smooth flow. 

 

There are two less rules for stratified smooth and wavy flow classification because the 95% confidence intervals for 

R_AmpS and Freq+R_AmpS parameters intersect each other.  

The classification performance of the 22 rules was verified using data from the verification dataset, i.e. 156 signals 

from experiments with inlet 1 and outlet without curve that is the same geometry as the training group. The validation of 

the rules was performed applying the same rules for the five validation datasets described in Tab. 3. These data were 

acquired in the experimental unit with changes in the inlet and outlet geometries in order to verify the validity of the rules 

created when geometric changes are applied. The performance results achieved by the 12 rules for classification of the 

patterns between intermittent, stratified, and between the stratified smooth and wavy flow are shown in Tab. 4. 

 

Table 4 – Efficiency results of the application of a threshold for the classification between intermittent and stratified 

flows and between stratified smooth and wavy flows. 

 

Parameters 

Intermittent and stratified flow 

classification efficiency (%) 

Stratified smooth and wavy flow 

classification efficiency (%) 

TRN VER VLD* TRN VER VLD* 

AmaxS 99.36 89.64 74.68 (±19.93) 87.67 74.23 32.15 (±28.39) 

AmaxC 98.72 91.44 91.02 (±5.58) 90.41 55.67 53.19 (±22.46) 

AmedS 53.21 56.31 52.90 (±5.41) 100.00 81.44 38.14 (±21.01) 

Freq 87.82 59.91 81.05 (±9.13) 75.34 58.76 33.59 (±29.13) 

Freq+AmaxC 98.72 91.44 91.16 (±5.63) 91.78 55.67 49.76 (±25.34) 

Freq+AmaxS 99.36 89.64 74.68 (±19.93) 89.04 74.23 32.52 (±27.88) 

Freq+AmedS 65.38 43.24 60.44 (±7.28) 75.34 75.26 38.14 (±21.01) 

Entrp_L 100.00 91.89 91.14 (±7.15) 75.34 56.70 47.08 (±19.75) 

R_AmpS 100.00 88.74 75.25 (±19.72) – – – 

R_AmpC 98.08 90.09 90.15 (±6.56) 93.15 50.52 51.01 (±25.07) 

Freq+R_AmpS 100.00 88.74 75.25 (±19.72) – – – 

Freq+R_AmpC 98.08 90.09 90.15 (±6.30) 93.15 50.52 50.41 (±27.61) 

TRN – training dataset; VER – verification dataset; VLD – validation datasets; * average (± standard deviation) 

 

Observing the results of Tab. 4 for the training dataset, it was identified that Entrp_L, R_AmpS and Freq+R_AmpS 

parameters had 100% efficiency for the classification between stratified and intermittent flow. However, both R_AmpS 

and Freq + R_AmpS achieved an overall validation efficiency of 75.25% (± 19.72). This large deviation from the average 

is not a desirable attribute for a generalized classifier. When analyzing Tab. 5, which presents the results achieved by the 

classification rules for each set of validation data, it is possible to verify the variations in the efficiency values between 

the validation data, which may represent the effect of the geometric change in the pressure signal in relation to training 

and verification data. The VLD_3 data set (inlet 2 and outlet with 90 ° curve) was the one with the lowest efficiency 

values both for the classification rules between the stratified and intermittent flows, as well as for the classification 

between the smooth and wavy stratified patterns. 

The best classification rule was whichever had highest overall validation efficiency with low standard deviation. Five 

rules had average efficiency higher than 90%. The rules with Freq+AmaxC and Entrp_L had a remarkably similar 

performance (Tab. 4). 

Although one could argue that the 91.14% average efficiency achieved by Entrp_L is close enough to consider its 

performance matched with the 91.16% of Freq+AmaxC, the standard deviation for the latter is 27% lower. Therefore, the 

best classification rule was the one using Freq+AmaxC parameter. This rule had 91.16% (±5.63) overall validation 

efficiency and its application on all datasets is illustrated in Fig. 2. It is possible to verify a clear separation in the 

dispersion of data between intermittent and stratified flow. Basically, the same dispersion pattern was observed in all data 

sets. 

 

 

 

Table 5 – Efficiency results achieved by the classification rules for each set of validation data. 
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Parâmetro 

Intermittent and stratified flow classification 

efficiency (%) 

Stratified smooth and wavy flow 

classification efficiency (%) 

VLD_1 VLD_2 VLD_3 VLD_4 VLD_5 VLD_1 VLD_2 VLD_3 VLD_4 VLD_5 

AmaxS 65.97 99.35 48.30 88.67 71.13 24.66 77.78 25.00 0.00 33.33 

AmaxC 94.44 96.73 82.31 89.33 92.25 53.42 86.11 28.95 36.36 61.11 

AmedS 49.31 52.94 48.30 52.00 61.97 24.66 75.00 25.00 32.73 33.33 

Freq 68.75 92.16 80.27 87.33 76.76 6.85 75.00 5.26 34.55 46.30 

Freq + AmaxC 94.44 96.73 82.31 89.33 92.96 49.32 86.11 25.00 27.27 61.11 

Freq + AmaxS 65.97 99.35 48.30 88.67 71.13 24.66 77.78 25.00 1.82 33.33 

Freq + AmedS 62.50 61.44 48.30 68.00 61.97 24.66 75.00 25.00 32.73 33.33 

Entrp_L 87.50 100.00 82.99 88.00 97.18 43.84 75.00 57.89 32.73 25.93 

R_AmpS 65.97 99.35 48.30 88.00 74.65 - - - - - 

R_AmpC 89.58 99.35 80.95 89.33 91.55 50.68 90.28 27.63 30.91 55.56 

Freq + R_AmpS 65.97 99.35 48.30 88.00 74.65 - - - - - 

Freq + R_AmpC 89.58 99.35 81.63 89.33 90.85 49.32 93.06 25.00 27.27 57.41 

 

 

 
 

Figure 2 – Intermittent/stratified flow classification rule using Freq+AmaxC parameter. The rule is applied on sensor 2 

data from five groups: (a) verification, (b) validation 1, (c) validation 2, (d) validation 3, (e) validation 4 and (f) 

validation 5. 

 

The performance for stratified smooth/wavy flow classification (Tab. 4) was very poor: 70% of the rules had less 

than 50% overall validation efficiency. The standard deviation was below 20 in only one classification rule (Entrp_L). 

Following the proposed criterion, the best parameter to classify between smooth and wavy flow was AmaxC with 53.19% 

efficiency for the validation dataset. 

The pressure parameters provided no distinct separation between the stratified flow patterns (Fig. 3) because the 

differential pressure signals may not the most adequate to characterize the small wave fluctuations that occurred for the 

operational conditions used to obtain the stratified flows. Consequently, a classification of stratified flows using 

differential pressure will have its performance hindered. 

The final tests of the classification used data from literature, the relevant information from the five studies found is 

presented in Tab. 6. 
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Figure 3 – Stratified smooth/wavy flow classification using AmaxC rule applied on sensor 2 data from (a) verification, 

(b) validation 1, (c) validation 2, (d) validation 3, (e) validation 4 and (f) validation 5 groups. 

 

Table 6 – Studies on pattern recognition of two-phase air-water flow regimes in horizontal pipes using pressure data 

that reported both amplitude and prominent frequency of the pressure signals. 

 

Authors 
SGV 

(m/s) 

SLV 

(m/s) 

Frequency 

(Hz) 

Amplitude 

(Pa) 
Flow pattern L (m) D (mm) 

Santoso et al. (2012) 0.255 0.023 19.500 20.000 Smooth 9.000 24.000 

Santoso et al. (2012) 0.697 0.438 3.000 297.500 Plug 9.000 24.000 

Santoso et al. (2012) 2.315 1.255 2.860 3,867.100 Slug 9.000 24.000 

Sun et al. (2012) NA NA 22.100 3,352.000 Plug 6.040 50.000 

Sun et al. (2012) NA NA 4.650 16,530.000 Slug 6.040 50.000 

França et al. (1991) 12.600 6.800 5.970 31.730 Wavy 2.926 0.019 

França et al. (1991) 0.240 1.100 6.800 95.070 Plug 2.926 0.019 

França et al. (1991) 0.990 0.820 5.990 402.330 Slug 2.926 0.019 

Drahos et al. (1987) 0.200 0.400 3.690 2,462.000 Smooth/Slug 5.080 50.000 

Drahos et al. (1987) 4.000 1.000 0.730 6,418.000 Slug 5.080 50.000 

Drahos et al. (1987) 0.750 1.000 2.830 2,493.000 Plug 5.080 50.000 

Drahos et al. (1987) 2.000 0.400 0.970 3,399.000 Slug 5.080 50.000 

Drahos et al. (1996) 10.000 1.000 1.630 16,509.000 Slug/Annular 5.080 50.000 

Drahos et al. (1996) 15.000 1.000 1.840 19,971.000 Slug/Annular 5.080 50.000 

Drahos et al. (1996) 20.000 1.000 3.130 8,354.000 Slug/Annular 5.080 50.000 

Drahos et al. (1996) 6.000 1.000 1.430 13,335.000 Slug 5.080 50.000 

Drahos et al. (1996) 0.500 1.000 3.000 1,573.000 Bubble/Plug 5.080 50.000 

Drahos et al. (1996) 0.750 1.000 3.000 1,952.000 Plug 5.080 50.000 

Drahos et al. (1996) 1.000 1.000 1.000 1,963.000 Plug/Slug 5.080 50.000 

Drahos et al. (1996) 1.500 1.000 0.860 2,708.000 Slug 5.080 50.000 

SGV – superficial gas velocity; SLV – superficial liquid velocity; L – length of the pipe; D – diameter of the pipe; NA – 

data not available. 

 

Considering that not all studies used the same flow pattern map, the reported phase superficial velocities were used 

to identify the location of the experiments on the map of Mandhane et al. (1974). The flow patterns adopted for the 

literature-based classification test are indicated on Fig. 4. There was one difference when compared the flow patterns 

identified on the map and those reported in the studies. França et al. (1991) reported that the experiment with 12.6 m/s 

gas and 6.8 liquid velocities was a stratified wavy flow while according to Mandhane’s map; this experiment should have 
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a bubble flow. Since the superficial velocities of Sun et al. (2012) were not available and the flow pattern from França et 

al. (1991) was, different it was used the patterns reported by both authors instead of using the one indicated by Mandhane’s 

map. 

 

 
 

Figure 4 – Selected studies (Tab. 5) experimental points on the flow pattern map of Mandhane et al. (1974). 

 

Classification of literature data using Freq+AmaC rule is shown in Fig. 5. Only one experimental point was 

misclassified resulting in 95% efficiency. The rule falsely identified the flow pattern with gas/liquid operational condition 

of 0.24/1.10 m/s as stratified instead of intermittent. Moreover, even if we had excluded França et al. (1991) divergent 

data the performance could still be considered good with 94.74% efficiency. 

The sole misclassification with literature data can be explained by the lack of intermittent plug patterns in the training 

group. Since no plug flow operational conditions occurred in the experiments, the classifier had no examples of the 

parameter values for this pattern and consequently had a deficiency in its generalization power. One way to correct this 

is to extend the levels of the experimental test matrix to incorporate plug flow operational conditions. However, this could 

only be done by updating the experimental unit to allow the operating conditions for the occurrence of this flow pattern. 

 

 
 

Figure 5 – Result of the application of Freq+AmaxC rule on data from selected studies (Tab. 5). 

 

4. CONCLUSIONS 

 

Analyzing the rules for the classification of flow patterns, the parameter Freq+AmaxC proved to be quite promising. 

It showed an average efficiency of 92.28% achieved for training, verification and validation datasets extracted from the 

experimental unit located at the Verification and Validation Laboratoty. The comparison of the results obtained with 

literature data were also good since this rule had a 95% performance using data acquired by different operators, gas-liquid 

velocities and at different research facilities.  

This method of identifying the stratified and intermittent flow patterns proves to be a good alternative for the 

industry’s necessity to blindly diagnose the flow regime based on data from pressure sensors because these devices are 

relatively easy to install, have a low cost and are not intrusive of the flow.  

However, this classification methodology still has room for improvement. More experiments can be added to the 

training dataset to incorporate not only the other regimes such as bubble and annular flows, but also different examples 

of stratified and intermittent flows. It is also important that data from different experimental units be integrated into the 

training dataset to consider any possible inlet/outlet geometry effect on the signal’s parameters. 
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