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Abstract. Simulation results based on the lattice Boltzmann method are shown for the turbulent lid-driven two-
dimensional cavity flow at Reynolds number 100,000. We make use of a boundary condition scheme that significantly
improves stability for simulation of turbulent flows within the lattice Boltzmann method framework. Explicit expressions
for the turbulent kinetic energy budget are presented and its evolution is studied in 2D turbulence. We also look at the
evolution of enstrophy and palinstrophy.
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1. INTRODUCTION

Turbulence is ubiquitous in nature and in industrial processes, and for many years has garnered interest as a funda-
mental problem for physics as well as mathematics and engineering (Chen et al., 2003; Landau and Lifshitz, 1987). In
many situations of practical interest, there is statistical non-homogeneity and anisotropy in the flow field, where highly
nontrivial interactions between bulk flow and boundary layers emerge (Hegele Jr. et al., 2018). Computational fluid
dynamics (CFD) in its current developmental stage offers a wide array of elaborate mathematical tools and numerical
methods capable of solving the Reyolds-averaged or filtered Navier-Stokes equations in domains discretized with meshes
of high geometrical complexity, over a large span of flow regimes, from low Mach subsonic to hypersonic. However, fun-
damental studies of turbulence rely on the full resolution of all the spatial and temporal scales present in the turbulent flow
field. This is achieved through direct numerical simulation (DNS), which is currently limited for all practical purposes
to simple geometries. The lid-driven cavity flow is a simple geometry that lends itself to the study of multiple boundary
layer interaction with the turbulent bulk flow. The flow is created by a solid wall moving tangentially to itself, sealing off
the cavity. In this work we restrict our attention to two-dimensional turbulence, which features fundamental differences
with respect to three-dimensional turbulence, owing to the lack of the vortex-stretching term in the vorticity equation.
Hegele Jr. et al. (2018), on which this work is based on, introduces a novel implementation of boundary conditions in the
regularized lattice Boltzmann method (LBM) and also shows that, at increasing Re, complex flow dynamics emerge in
the lid-driven cavity.

One of the fundamental quantities of interest is the turbulent kinetic energy (TKE) and its budget. To the best of our
knowledge, neither the implementation nor the equations of TKE balance, as shown here, are found in other work. It is
our aim to fill in this research gap regarding the 2D lid-driven cavity flow and TKE budget.

The choice of simulation method is LBM, a CFD solution that is based on a discretazion of the Boltzmann equation
over a lattice and that can be shown to be equivalent to the macroscopic conservation equations, in addition to having
simple and efficient implementations (Krüger et al., 2017).

The paper is divided as follows: §2 presents the lattice Boltzmann method, the boundary conditions and the turbulent
kinetic energy balance equation. The results are presented and discussed in §3. In §4 we offer the conclusions and lay out
future work.
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2. METHODOLOGY

2.1 The lattice Boltzmann Method

The lattice Boltzmann method solves the particle distribution function. The density of particles are represented by the
particle populations, also known as the discrete-particle distribution function fi(r, t) according to Eq. (1), which is related
to velocity ci at position r and time t, in dimensionless units. Moreover, there are velocity sets that are used to solve
Navier-Stokes (N-S) equations, denoted by DdQq (where d is the number of spatial dimensions and q is the velocity set
number). In this work we use the D3Q19 implementation (Krüger et al., 2017),

fi(r+ ci, t+ 1) = f
(eq)
i (r, t) + (1− τ−1)f̂ (neq)i (r, t), (1)

where f (eq)i is the equilibrium particle distribution and f̂ (neq)i is the regularized non-equilibrium particle distribution and
τ is the relaxation time. The equilibrium depends on the local quantities density, ρ, and fluid velocity.

In order to regularize the particle distribution function, Eq. (2) gives the conserved macroscopic variables as weighted
moments of the particle distribution function, of zeroth-order, ρ, first-order, ρuα and second order ρm(2)

αβ . δαβ term is the
Kronecker delta, as is the scaling factor equal to

√
3 and gi is the particle distribution function fi or regularized particle

distribution function f̂i (Latt and Chopard, 2006; Montessori et al., 2014),

{
ρ, ρuα, ρm

(2)
αβ

}
=
∑
i

gi
{
1, ciα, ciαiβ − δαβ/a2s

}
. (2)

The equilibrium particle distribution function f (eq), is expressed considering the second-order velocity expansion in
the Hermite polynomials (Philippi et al., 2006; Shan et al., 2006),

f
(eq)
i (r, t) = ρwi

(
1 + a2suαciα +

1

2
a4suαuβH

(2)
αβ,i

)
, (3)

where wi are the quadrature weights, which depend on the absolute value of the direction ci. The second-order moments
are projected onto the velocity space, as we can see in the Eq. (4):

f̂
(neq)
i (r, t) =

1

2
ρwia

4
s

[
m

(2)
αβ − uαuβ

]
H

(2)
αβ,i. (4)

Finally, the regularization procedure is completed as Eq. (5) (Mattila et al., 2017; Coreixas et al., 2017),

f̂i(r, t) = f
(eq)
i (r, t) + f̂i

(neq)
(r, t). (5)

By itself, the regularization procedure of LBM, in spite of presenting larger stability, does not necessarily address
boundary conditions (Hegele Jr. et al., 2018). Thus, from regularization procedure of particles distribution function,
boundary conditions may be found turning possible the definition and characterization of the desired flow modeling (Latt
et al., 2008; Malaspinas et al., 2011). With the sum of still-unknown regularized particles at the boundaries node, it is
achievable to obtain the second-order particle momentum from Eq. (6), which is also expressed with regularized particles
distribution function, as shows Eq. (7).

∑
i∈Is

fiH
(2)
αβ,i +

∑
i/∈Is

f̂iH
(2)
αβ,i = ρm

(2)
αβ , (6)

which is also expressed with regularized particles distribution function,

∑
i∈Is

f̂iH
(2)
αβ,i +

∑
i/∈Is

f̂iH
(2)
αβ,i = ρm

(2)
αβ . (7)

In short, through second-order particle momentum decomposition to regularized particles distribution function (con-
sidering belonging and not belonging particles distribution to an incoming velocity set Is) combined to Eq. (6), equiva-
lence is established between the sum of fi function (regularized and not-regularized), according to Eq. (8), leading to a
set of six equations when using D3Q19 distribution.∑

i∈Is

fiH
(2)
αβ,i =

∑
i∈Is

f̂iH
(2)
αβ,i. (8)
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In a nutshell, LBM consists on collision and streaming. The collision is simply an algebraic local operator, that
calculates zero-order momentum and the macroscopic velocity u to find equilibrium distributions f (eq)i and post-collision.
After that, the resulting distribution of post-collision is streamed to neighbouring nodes (Krüger et al., 2017).

Hegele Jr. et al. (2018) guide that when considering Dirichlet boundaries, the velocity u is known, in principle. Then,
having mass conservation during the process of particles collision, the boundaries to the 3D fluid flow, to each node, can
be found by Eq. (9):

∑
i∈Is

fi(r, t) =
∑
i∈Os

fi(r+ ci, t+ 1) = (1− τ−1)
∑
i∈Os

f̂i(r, t) + τ−1
∑
i∈Os

f
(eq)
i (r, t). (9)

2.2 Turbulent Kinetic Energy Budget

The following treatment will consider the three-dimensional form of the evolution equations, for the sake of generality.
When appropriate, equations will be further simplified to two-dimensional form. The evolution of TKE is given by (Pope,
2000),

∂tk + Uα∂αk + ∂αT
′

α = P − ε, (10)

where k ≡ 1
2 〈u

′

αu
′

α〉 is the turbulent kinetic energy, u
′

α ≡ uα − Uα is the fluctuating velocity and Uα ≡ 〈uα〉. The 〈·〉
operator is the ensemble average. The turbulent transport T

′

α is given by

T
′

α =
1

2
〈u

′

αu
′

βu
′

β〉+ 〈u
′

α

p
′

ρ
〉 − 2ν〈u

′

βsαβ〉, (11)

and the production of TKE P is given by

P = 〈u
′

αu
′

β〉∂βUα. (12)

Finally, the dissipation rate of TKE, ε, is given by

ε = 2νsαβsαβ , (13)

where sαβ = 1
2

(
∂αu

′

β + ∂βu
′

α

)
is the fluctuating rate-of-strain tensor and p

′
= p − 〈p〉 is the fluctuating (modified)

pressure.
In the equations above, the operator 〈·〉 represents the ensemble average. However, in this work we are interested in

the statistically stationary turbulence state, and under this condition we approximate the ensemble average of a property
φ as a time-average over a interval of duration δt, during which the system is in a statistically stationary state (Hegele Jr.
et al., 2018).

〈φ〉(x, y, z) ≡ 1

δt

∫ ti+δt

ti

φ(x, y, z, t)dt. (14)

In the following equations we write out all of the TKE terms explicitly. It will facilitate the understanding of this
important energy budget.

2.2.1 Turbulent Kinetic Energy Term

The TKE can be written as,

k ≡ 1

2
〈u

′

αu
′

α〉 =
1

2
〈(uα − Uα)(uα − Uα)〉, (15)

then:

k =
1

2
〈uαuα − 2uαUα + UαUα〉, (16)

so:

k =
1

2
(〈uαuα〉 − 2〈uαUα〉+ 〈UαUα〉) . (17)
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Assuming 〈uαuα〉 = 〈u2〉, 〈uαUα〉 = 〈uα〉Uα = UαUα, and that 〈UαUα〉 = 〈Uα〉〈Uα〉 = UαUα = U2, because U
does not depend on t. Thereby, Eq. (18) leads to:

k =
1

2

(
〈u2〉 − U2

)
, (18)

where explicitly goes for:

k =
1

2

(
〈u2x〉+ 〈u2y〉+ 〈u2z〉 − U2

x − U2
y − U2

z

)
. (19)

As the term ∂tk = 0, the other one related to k, Uα∂αk, is given by:

Uα∂αk = Ux
∂k

∂x
+ Uy

∂k

∂y
+ Uz

∂k

∂z
. (20)

2.2.2 Turbulent Transport Term

To the T
′

α term, let us separate it in three terms, as:

Aα =
1

2
〈u

′

αu
′

βu
′

β〉, (21)

Bα = 〈u
′

αp
′
〉1
ρ
, (22)

and

Cα = −2ν〈u
′

βsαβ〉, (23)

where T
′

α = A+B + C.
So, taking term A, it is possible to express mathematically as:

Aα =
1

2
〈(uα − Uα)(uβ − Uβ)(uβ − Uβ)〉, (24)

then:

Aα =
1

2
〈(uα − Uα)(uβuβ − 2uβUβ + UβUβ)〉, (25)

so:

Aα =
1

2
〈uαuβuβ + uαUβUβ − 2uαuβUβ − uβuβUα − UαUβUβ + 2uβUαUβ〉. (26)

Using mathematical manipulation,

Aα =
1

2
(〈uαuβuβ〉+ 〈uαUβUβ〉 − 2〈uαuβUβ〉 − 〈uβuβUα〉 − 〈UαUβUβ〉+ 2〈uβUαUβ〉) . (27)

In an analogous way to what we assumed in before, we can simplify the parameters, so:

Aα =
1

2

(
〈uαu2〉+ UαU

2 − 2〈uαuβ〉Uβ − Uαu2 − UαU2 + 2UαU
2
)
, (28)

cancelling some terms, it follows:

Aα =
1

2

(
〈uαu2〉 − 2〈uαuβ〉Uβ − Uαu2 + 2UαU

2
)
. (29)

Continuing, we now take term B, that can be expressed as:

Bα = 〈(uα − Uα)(p− 〈p〉)〉
1

ρ
, (30)

as for this work ρ is always equal to 1 (Ma number is too much lower than 1) and making use algebra:

Bα = 〈uαp− Uαp− uα〈p〉+ Uα〈p〉〉, (31)
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then:

Bα = 〈uαp〉 − 〈Uαp〉 − 〈uα〈p〉〉+ 〈Uα〈p〉〉, (32)

and after mathematical manipulations:

Bα =
〈uαp〉
3
− Uα〈p〉. (33)

Finally, for term C we get:

Cα = −2ν〈(uβ − Uβ)
1

2

(
∂αu

′

β + ∂βu
′

α

)
〉, (34)

so:

Cα = −2ν〈(uβ − Uβ)
1

2
(∂α(uβ − Uβ) + ∂β(uα − Uα))〉, (35)

then:

Cα = −ν〈(uβ∂α(uβ − Uβ)− Uβ∂α(uβ − Uβ) + uβ∂β(uα − Uα)− Uβ∂β(uα − Uα)〉, (36)

making the distributive:

Cα = −ν〈uβ∂αuβ − uβ∂αUβ − Uβ∂αuβ + Uβ∂αUβ + uβ∂βuα − uβ∂βUα − Uβ∂βuα + Uβ∂βUα〉, (37)

applying mean parameter in each term:

Cα =− ν(〈uβ∂αuβ〉 − 〈uβ∂αUβ〉 − 〈Uβ∂αuβ〉+ 〈Uβ∂αUβ〉+ 〈uβ∂βuα〉 − 〈uβ∂βUα〉 − 〈Uβ∂βuα〉 (38)
+ 〈Uβ∂βUα〉).

In order to facilitate, we take term by term in Eq. (38), where:

〈uβ∂αuβ〉 =
1

2
∂α〈uβuβ〉 =

1

2
∂α〈u2〉, (39)

−〈uβ∂αUβ〉 = −〈uβ〉∂αUβ = −Uβ∂αUβ = −1

2
∂αU

2, (40)

−〈Uβ∂αuβ〉 = −Uβ∂α〈uβ〉 = −Uβ∂αUβ = −1

2
∂αU

2, (41)

〈Uβ∂αUβ〉 = Uβ∂αUβ =
1

2
∂αU

2, (42)

〈uβ∂βuα〉 = ∂β〈uβuα〉, (43)

−〈uβ∂βUα〉 = −〈uβ〉∂βUα = −Uβ∂βUα, (44)

−〈Uβ∂βuα〉 = −Uβ∂β〈uα〉 = −Uβ∂βUα, (45)

〈Uβ∂βUα〉 = Uβ∂βUα. (46)

It is possible to observe that Eq. (40) with Eq. (41), and Eq. (44) with Eq. (46) are cancelling themselves. So, Eq. (38)
is shown as:

Cα = −ν
(
1

2
∂α〈u2〉 −

1

2
∂αU

2 + ∂β〈uβuα〉 − Uβ∂βUα
)
. (47)
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2.3 Production of Turbulence Term

Following the TKE equation, in this subsection we are going to explicit the P term, that can be expressed by:

P = 〈(uα − Uα)(uβ − Uβ)〉∂βUα, (48)

so:

P = 〈(uαuβ − Uαuβ − uαUβ + UαUβ)〉∂βUα, (49)

applying mean parameter to each term:

P = (〈uαuβ〉 − 〈Uαuβ〉 − 〈uαUβ〉+ 〈UαUβ〉)∂βUα, (50)

then:

P = (〈uαuβ〉 − Uα〈uβ〉 − 〈uα〉Uβ + UαUβ)∂βUα, (51)

and simplifying:

P = (〈uαuβ〉 − UαUβ)∂βUα. (52)

2.3.1 Dissipation of Turbulent Kinetic Energy Term

To express the dissipation term, from Eq. (13), we take:

ε = 2ν
1

2
[∂α(uβ − Uβ) + ∂β(uα − Uα)]

1

2
[∂α(uβ − Uβ) + ∂β(uα − Uα)] , (53)

so:

ε = ν
1

2
(∂αuβ − ∂αUβ + ∂βuα − ∂βUα)(∂αuβ − ∂αUβ + ∂βuα − ∂βUα), (54)

then:

ε =ν
1

2
(∂αuβ∂αuβ − ∂αuβ∂αUβ + ∂αuβ∂βuα − ∂αuβ∂βUα − ∂αUβ∂αuβ + ∂αUβ∂αUβ − ∂αUβ∂βuα (55)

+ ∂αUβ∂βUα + ∂βuα∂αuβ − ∂βuα∂αUβ + ∂βuα∂βuα − ∂βuα∂βUα − ∂βUα∂αuβ + ∂βUα∂αUβ

− ∂βUα∂βuα + ∂βUα∂βUα),

where simplifying we have:

ε =ν
1

2
(∂αuβ∂αuβ − 2∂αuβ∂αUβ + 2∂αuβ∂βuα − 2∂αuβ∂βUα + ∂αUβ∂αUβ − 2∂αUβ∂βuα + 2∂αUβ∂βUα (56)

+ ∂βuα∂βuα − 2∂βuα∂βUα + ∂βUα∂βUα).

3. PRELIMINARY RESULTS

Following Hegele Jr. et al. (2018), we set a constant tangential velocity equal to u = (uL, 0, 0) applied at the top of
the cubic cavity and on the other five faces of the cavity we set the velocity to zero. The spatial discretization is given by
Nx = Nz = 2049 and Ny = 1. This allows for the implementation of a two-dimensional flow within the more general
framework of a three-dimensional code. For the lid velocity, we consider uL = 0.1cs, where cs = 1/

√
3 is the sound

speed in the fluid, avoiding compressibility effects by keeping the Mach number low. The relaxation time is tuned to set
the Reynolds number through the viscosity ν = (τ − 1/2)/a2s . The pressure p is given by p = c2sρ. The flow Reynolds
number is 100,000.

When the Reynolds number is low (laminar) the flow in the cavity remains steady. But as Re increases considerably,
going through transition, the normal velocity traces (u along z and w along x) show that the center of the vortex created
by the fluid moves towards the cavity center. which can be seen in Fig. 1. We note that there is already, even with 5× 106

time steps, considerable turbulence in the cavity, owing to the high-Reynolds number.
Kinetic energy is steadily increasing as is shown in Fig. 2. No sign of a statistically stationary state is seen. The

evolution of TKE will depend on the relative magnitude of the terms in Eq. (10). Since there is no term associated with
vortex-stretching in 2D turbulence, vorticity can only be generated along the solid boundaries, diffusing towards the bulk
flow. A snapshot of the vorticity field is shown in Figure 3 after 5× 106 time steps. The irregular pattern of many vortices
in the cavity indicate the complex nature of turbulent flow. Analysis of this flow will be completed as the simulation
progresses.
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Figure 1. Normal velocity traces along the centerlines of the x and z

Figure 2. Kinetic energy at 5× 106 time steps
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Figure 3. Vorticity field of the infinite span lid-driven cavity at 5× 106 time steps

4. CONCLUSIONS

We note that the LBM boundary condition implementation adopted in this simulation withRe = 100, 000 is effectively
stable, even considering a large mesh resolution. In spite of the simulation having not reached a statistically stationary
state, we estimate it will be achieved with an additional 10× 106 simulation time steps.

After the statistically stationary state is reached, we can evaluate the TKE, in order to check the consistency of the
results, and also analyse enstrophy and palinstrophy.
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