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Abstract. In this paper, the linear planar dynamics of a fluid-conveying cantilevered pipe with a mass attached at the 
free end is analyzed. Primarily, as external forces, a pulse load applied to the free end, and the self-weight of the pipe-
fluid system were considered. For such loads, the dynamic behavior was analyzed for different flow velocities. 
Additionally, to the current external applied forces, a gravitational force has been considered, due to the end mass. 
The pipe was considered an Euler-Bernoulli cantilever beam having a non-negligible flexural rigidity. Only 
transversal, and angular displacements related to the undeformed pipe axis were considered. The fluid considered is 
incompressible, and the material of the pipe is elastic. The equation of motion for the model is obtained using 
Hamilton's variational principle. The direct integration of the dynamic equations was solved by the Newmark method. 
Numerical analyzes and simulations were performed using a code developed in Matlab. This paper demonstrated that 
in the presence of the end-mass, for different flow velocities, the system exhibits a chaotic dynamic behavior. It was 
demonstrated also that for increasing flow velocities the natural frequencies of the system decrease with time 
approaching to zero at the theoretical critical velocity.  
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1. INTRODUCTION 
 
Rigid pipes are of fundamental importance in riser systems for operations in the oil, and gas industry, in deep and 

ultra-deep water operations. The internal fluid is composed of a mixture of oil, gas, and water, flowing under different 
conditions of pressure, and temperature, known as slug flow. In particular, slug flow is a frequent operational 
phenomenon that occurs in the offshore industry. The dynamic nature of the slug pattern induces variable forces over 
time, leading to structural vibrations of the riser systems. These vibrations can produce considerable deflections, and 
stresses, which can cause excessive bending, local buckling, or failure due to fatigue. These conditions make its 
mathematical modeling highly complex. The study of riser systems under dynamic loads induced by a multiphase 
internal flow in deep waters is recent. Particularly in the offshore oil, and gas industry, there are some papers dedicated 
to the analysis of internal flow-conveying risers. Some authors have analyzed the dynamic behavior of the riser systems, 
involving relevant issues, such as the effect of the pipe flexural stiffness, the influence of large deformations, and the 
influence of the pulsatile internal flow, among others. Wu and Lou (1981) developed a mathematical model to study the 
simultaneous effect of the flow of internal fluid, and the flexural rigidity of the pipe, on the dynamic behavior of 
flexible risers. The authors concluded that the flexural stiffness had a great influence on the dynamic response of the 
riser, under internal flow at high velocities. Yamamoto (2011) carried out experiments on the effect of the flow of 
internal fluid, on the dynamic behavior of vertical pipes. The author noted that the pipe natural frequency tends to 
decrease with increasing fluid flow. Onuoha, Li, and Duan (2012) considered a linear structural model with small 
displacements, including the effects of axial traction. They developed the governing equation and used for its numerical 
resolution, the technique approximated by finite differences. 
 
2. GOVERNING EQUATION 
 
A cantilevered pipe is considered in Fig. 1. The basic hypotheses for the system are a) Flow of incompressible fluid, 
with constant velocity U [m/s]. b) The length of the pipe is much larger than the internal diameter. c) The vertical 
deflection w, and the slope ∂w»∂x is small compared with the beam’s length. So that the small displacements and angle 
assumption shall be used. d) The flow of fluid is turbulent. e) Hook's law behavior of the pipe material is assumed. f) In 
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the horizontal direction, the displacements are neglected. g) The cross-sections of the deformed pipe remains orthogonal 
to the deformed axis. 
 

 
Figure 1. System scheme – Pipe with an end-mass attached at the free end. 

 
2.1. Euler-Bernoulli beam model 
 
The potential energy of a uniform beam due to bending is given by (Petyt, 2010): 
 

𝑈 =
ଵ

ଶ
∫ 𝐸 𝐼௭  ቂ

డమ௪(௫,௧)

డ௫మ ቃ
ଶ

𝑑𝑥
௅

଴
                                                                                                                                         (1) 

 
where 𝐸 is the modulus of elasticity, 𝐼௭ the area moment of inertia of the cross-section about the neutral axis, 𝑤(𝑥, 𝑡) 
the transverse deflection at the axial location 𝑥 and time 𝑡, and 𝐿 the length of the beam. The kinetic energy of a beam is 
given by 
 

𝑇 =
ଵ

ଶ
∫ 𝜌௕  𝐴௕  ቂ

డ௪(௫,௧)

డ௧
ቃ

ଶ
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௅

଴
                                                                                                                                        (2) 

 
where 𝜌௕ is the density of the beam, and 𝐴௕ the beam cross-sectional area. If there is a distributed load, per unit 
length,𝑝௬, then the force in the increment, 𝑑𝑥, is 𝑝௬𝑑𝑥, and the work done in a virtual displacement 𝛿𝑤(𝑥, 𝑡) is 
𝛿𝑤(𝑥, 𝑡) 𝑝௬ 𝑑𝑥. The virtual work for the element is therefore 
 

𝛿𝑊௡௖ = ∫ 𝑝௬ 𝛿𝑤(𝑥, 𝑡)𝑑𝑥
௅

଴
                                                                                                                                            (3) 

 
The mathematical statement of Hamilton’s principle is shown to be: 
 

∫ [𝛿(𝑇 − 𝑈) + 𝛿𝑊௡௖]
௧మ

௧భ
𝑑𝑡 = 0                                                                                                                                     (4) 

 
Substituting equations (1), (2), and (3) in Eq. (4), and integrating by parts, gives the governing differential equation of 
motion for a beam: 
 

𝐸𝐼௭
డర௪(௫,௧)

డ௫ర +  𝜌௕𝐴௕
డమ௪(௫,௧)

డ௧మ = 𝑝௬                                                                                                                                (5) 

 
The integrated terms left of Eq. (4), are given by: 
 

ቂ
డమ௪

డ௫మ 𝛿 ቀ
డ௪

డ௫
ቁቃ

଴

௅

= 0,    ቂ
డయ௪

డ௫య 𝛿𝑤ቃ
଴

௅

= 0                                                                                                                            (6) 

 
where the first derivative 𝜕𝑤 𝜕𝑥⁄  is the slope, the second derivative 𝜕ଶ𝑤 𝜕𝑥ଶ⁄  is the bending moment, and the third 
derivative 𝜕ଷ𝑤 𝜕𝑥ଷ⁄  is the shear force. For equation (6) to be satisfied, the following boundary conditions hold, for the 
free end (𝑥 = 𝐿), and for the clamped end (𝑥 = 0). 
 

డయ௪

డ௫య = 0,     
డమ௪

డ௫మ = 0,    
డ௪

డ௫
= 0,          𝑤 = 0                                                                                                                 (7) 

 
2.2. Fluid model 
 
The kinetic energy for the fluid is given by: 
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𝑇௙ =
ଵ

ଶ
∫ 𝜌௙𝐴௙

௅

଴
ቀ

஽

஽௧
[𝑤(𝑥, 𝑡)]ቁ

ଶ

𝑑𝑥                                                                                                                               (8) 

 
where 𝜌௙ is the density of the fluid and 𝐴௙ the pipe internal cross-sectional area. The material time derivative 
஽

஽௧
[𝑤(𝑥, 𝑡)] for the fluid, considering the flow only in the 𝑥 −direction, with a constant velocity 𝑈 is given by (Blevins, 

1994): 
 

஽

஽௧
[𝑤(𝑥, 𝑡)] = ቀ

డ

డ௧
+ 𝑈

డ

డ௫
ቁ 𝑤(𝑥, 𝑡)                                                                                                                               (9) 

 

where 
డ

డ௧
 is the partial derivative operator to 𝑡, and 

డ

డ௫
  the partial derivative operator to 𝑥 as the motion is planar (𝑧 =

0). Substituting the Eq. (9) in Eq. (8) gives the kinetic energy of the fluid: 
 

𝑇௙ =
ଵ

ଶ
∫ 𝜌௙𝐴௙ ቂቀ

డ

డ௧
+ 𝑈

డ

డ௫
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ଶ
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௅

଴
                                                                                                                               (10) 

 
Developing the integrand of Eq. (10), and integrating by parts, the resulting equation is summed with Eq. (5), which 
gives the fluid-pipe system governing equation as follows: 
 

𝐸 𝐼௓  
డర௪(௫,௧)

డ௫ర + 𝑚௙ ቀ2 𝑈
డమ௪(௫,௧)

డ௧డ௫
+ 𝑈ଶ డమ௪(௫,௧)

డ௫మ ቁ + 𝑀௖
డమ௪(௫,௧)

డ௧మ − 𝑝௬ = 0                                                                   (11) 

 
where the first, and the last terms in Eq. (11) belong to the beam differential equation of motion. The second and the 
third terms represent, respectively, the Coriolis and the centrifugal effects on the beam’s motion, due to the relative 
velocity of the fluid inside the pipe. The quantities defined as 𝑚௧ = 𝜌௕𝐴௕ and 𝑚௙ = 𝜌௙𝐴௙ are the linear masses of the 
pipe and fluid, respectively. The quantity 𝑀௖ = 𝑚௙ + 𝑚௧ is the so- called consistent mass of the system, per unit length. 
Then, the fourth term in Eq. (11) represents the total inertia force relative to consistent mass. It can be noted that the 
linear mass 𝑚௧ defined above, multiplied by the acceleration 𝜕ଶ𝑤(𝑥, 𝑡) 𝜕𝑡ଶ⁄  gives the pipe inertia force as in Eq. (5). 
That inertia force is added to the inertia force of the fluid due to the linear mass 𝑚௙, giving the total inertia of the 
system. On the other hand, it was considered only concentrated external loads applied to nodes of the system. In this 
paper, by hypothesis, there are no external moments applied to the system as can be seen in Fig. 1. The external 
concentrated loads applied at the free end of the beam are composed by the pulse load, and the weight of the end-mass 
attached. The pulse load 𝑝௅ = 𝑃(𝑡), is a known variable force, which is a function of time. In section 4.2 of this paper, 
will be described what is the form of that force. The weight of the end-mass attached at the free end is 𝑝ெ = 𝑚 𝑔, 
where 𝑚 is the mass of the body, and 𝑔  is the local gravitational acceleration. Those external concentrated loads will be 
applied, in advance, in section 3, in very specific positions as the components of the external nodal force vector {𝑅௘௫௧}. 
 
3. SIMULATIONS BY FINITE ELEMENT ANALYSIS 
 
3.1. Finite element formulation 
 
The weak formulation is obtained by Galerkin’s method applied to Eq. (12). The resulting discretization in finite 
elements is made by considering the nodal displacement vector {𝑑(𝑡)}௘ for an element 𝑒, dependent on time as: 
 

{𝑑(𝑡)}௘ = ⌊𝑢ଵ(𝑡) 𝜃ଵ(𝑡) 𝑢ଶ(𝑡) 𝜃ଶ(𝑡)⌋்                                                                                                              (12) 
 
where, 𝑢ଵ(𝑡), 𝑢ଶ(𝑡) are nodal vertical displacements, and 𝜃ଵ(𝑡), 𝜃ଶ(𝑡) nodal rotations at nodes 1 and 2 of the typical 
element 𝑒. The externally applied loads on the element are represented by the element nodal force vector, 
 

{𝑟௘} = ⌊𝑉ଵ
௘ 𝑀ଵ

௘ 𝑉ଶ
௘ 𝑀ଶ

௘⌋்                                                                                                                                    (13) 
 
where 𝑉ଵ

௘ , 𝑉ଶ
௘ are nodal shear forces, and 𝑀ଵ

௘ ,   𝑀ଶ
௘ nodal moments at nodes 1 and 2 of the element. In finite element 

formulation, the shape function matrix for an element, is given by: 
 

[𝑁(𝑥)]௘=⌊𝑁ଵ(𝑥) 𝑁ଶ(𝑥) 𝑁ଷ(𝑥) 𝑁ସ(𝑥)⌋                                                                                                              (14) 
 
The Hermitian elements in Eq. (14) are given by (Cook, 2001): 
 

𝑁ଵ(𝑥) = 1 − 3
௫మ

௅మ + 2
௫య

௅య, 𝑁ଶ(𝑥) = 𝑥 − 2
௫మ

௅
+

௫య

௅మ , 𝑁ଷ(𝑥) = 3
௫మ

௅మ − 2
௫య

௅య, 𝑁ସ(𝑥) = −
௫మ

௅
+

௫య

௅మ                                    (15) 
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where 𝐿 is the length of the element. The transversal displacement 𝑤(𝑥, 𝑡) of the beam is approximated in finite element 
analysis by the product of the shape function matrix in Eq. (14), and the nodal displacement vector in Eq. (12) as: 
 

𝑤(𝑥, 𝑡) = [𝑁(𝑥)]௘{𝑑(𝑡)}௘                                                                                                                                           (16) 
 
In this paper, the time derivatives are noted as a dot symbol over the differentiated variable, �̇� = 𝑑𝜑/𝑑𝑡. Derivatives to 
𝑥 are noted as 𝜑ᇱ = 𝑑𝜑/𝑑𝑥. Substituting equations (12) to (16), with the corresponding derivatives in Eq. (11), gives 
the second-order differential equation for an element as follows:  
 

[𝑀௦]௘൛�̈�(𝑡)ൟ + [𝐶]௘൛�̇�(𝑡)ൟ + [𝑘]௘{𝑑(𝑡)} = {𝑟௘}                                                                                                        (17) 
 
Using the shape functions defined in Eq. (15), and the corresponding derivatives to 𝑥, the matrices in Eq. (17) can be 

determined, by direct integration. The stiffness matrix of the element is given by, [𝑘]௘ = 𝐸 𝐼 ∫ [𝑁ᇱᇱ]்௅

଴
[𝑁ᇱᇱ]𝑑𝑥. 

Integration gives: 
 

[𝑘]௘ =
ா ூ

௅య ∙ ቎

12 6𝐿
6𝐿 4𝐿ଶ

−12 6𝐿
−6𝐿 2𝐿ଶ

−12 −6𝐿
6𝐿 2𝐿ଶ

12 −6𝐿
−6𝐿 4𝐿ଶ

቏                                                                                                                    (18) 

 

Similarly, the system mass matrix is given by: [𝑀௦]௘ = 𝑀௖  ∫ [𝑁]்௅

଴
[𝑁]𝑑𝑥. After integration, gives, 

 

[𝑀௦]௘ =
ெ೎௅

ସଶ଴
቎

156 22𝐿
22𝐿 4𝐿ଶ

54 −13𝐿
13𝐿 −3𝐿ଶ

54 −13𝐿
−13𝐿 −3𝐿ଶ

156 −22𝐿
−22𝐿 4𝐿ଶ

቏                                                                                                          (19) 

 

The Coriolis matrix is given by: [𝑀஽]௘ = 2 𝑈 𝑚௙  ∫ [𝑁]்௅

଴
[𝑁ᇱ]𝑑𝑥, or: 

 

[𝑀஽]௘ =
௎௠೑

ଷ଴
቎

30 −6𝐿
6𝐿 0

−30 6𝐿
−6𝐿 𝐿ଶ

30 6𝐿
−6𝐿 −𝐿ଶ

30 −6𝐿
6𝐿 0

቏                                                                                                                     (20) 

 

The centrifugal force matrix is given by: [𝑀஼]௘ = 𝑈ଶ 𝑚௙  ∫ [𝑁ᇱ]்௅

଴
[𝑁ᇱ]𝑑𝑥, or: 

 

[𝑀஼]௘ =
௎మ௠೑

ଷ଴௅
቎

36 3𝐿
3𝐿 4𝐿ଶ

−36 3𝐿
−3𝐿 −𝐿ଶ

−36 −3𝐿
3𝐿 −𝐿ଶ

36 −3𝐿
−3𝐿 4𝐿ଶ

቏                                                                                                                (21) 

 
Starting with the mesh generation of 𝑁 finite elements for the structure, the linear system of second-order differential 
equations is assembled, as follows: 
 

[𝑀]൛�̈�ൟ + [𝐶]൛�̇�ൟ + [𝐾]{𝐷} = {𝑅௘௫௧}                                                                                                                       (22) 
 
In the global system, the vector {𝐷} is the nodal displacement vector, ൛�̇�ൟ is the nodal velocity vector, ൛�̈�ൟ is the nodal 
acceleration vector, and {𝑅௘௫௧} is the external nodal force vector. Accordingly, [𝑀] is the consistent mass matrix, 
[𝐶] = [𝑀஽] is the dissipation matrix, and [𝐾] is the stiffness matrix. The global mass matrix of the fluid-pipe system, 
ൣ𝑀௦௬௦൧ is the resulting assemble of all local element-mass matrices given by Eq. (17). The local lumped end-mass 
matrix is given by: 
 

[𝑀௔௧௧]௅ = 𝑚 ቎

0 0
0 0

0 0
0 0

0 0
0 0

1 0
0 0

቏                                                                                                                                      (23) 

 
where is 𝑚 the end-mass. According to the node where the end-mass is placed in the structure, the local end-mass 
matrix [𝑀௔௧௧]௅ is assembled on the global system. The result gives the global end-mass matrix [𝑀௔௧௧], which is then 
summed with the consistent mass of the system ൣ𝑀௦௬௦൧. The matrix [𝑀] in Eq. (22), is given by (Sobrinho, 2006): 
 



XXVII Congresso Nacional de Estudantes de Engenharia Mecânica 
08 a 12 de fevereiro de 2021, Curitiba, PR, Brasil 

 

 
 

[𝑀] = ൣ𝑀௦௬௦൧ + [𝑀௔௧௧]                                                                                                                                              (24) 
 

3.2 Direct integration 
 
In this paper, Newmark’s method is used for the direct integration of the dynamic equations. The parameters for the 
constant average acceleration method are (Cook, 2001): 
 

𝛼 =
ଵ

ଶ
,       𝛽 =

ଵ

ସ
                                                                                                                                                          (25) 

 
The Newmark’s formulation is given by: 
 

[𝐾௘௙௙]{𝐷}௡ାଵ = {𝑅௘௫௧}௡ାଵ + [𝑀] ቀ𝑎଴{𝐷}௡ + 𝑎ଵ൛�̇�ൟ
௡

+ 𝑎ଶ൛�̈�ൟ
௡

ቁ + [𝐶] ቀ𝑎ଷ{𝐷}௡ + 𝑎ସ൛�̇�ൟ
௡

+ 𝑎ହ൛�̈�ൟ
௡

ቁ              (26) 

 
where [𝐾௘௙௙] is the effective stiffness matrix, {𝐷}௡ାଵ is the displacement vector at 𝑛 + 1 time step, {𝑅௘௫௧}௡ାଵ is the 
external load vector at 𝑛 + 1 time step, {𝐷}௡, ൛�̇�ൟ

௡
, and ൛�̈�ൟ

௡
 are the displacement, velocity, and acceleration vectors at 

𝑛 time step, respectively. The acceleration and velocity vectors, calculated at time 𝑛 + 1 are given, respectively, by: 
 

൛�̈�ൟ
௡ାଵ

= 𝑎଴ ቀ{𝐷}௡ାଵ − {𝐷}௡ − 𝛥𝑡൛�̇�ൟ
௡

ቁ − 𝑎ଶ൛�̈�ൟ
௡

                                                                                                (27) 

 
൛�̇�ൟ

௡ାଵ
= 𝑎ଷ({𝐷}௡ାଵ − {𝐷}௡) − 𝑎ସ൛�̇�ൟ

௡
− 𝑎ହ൛�̈�ൟ

௡
                                                                                                  (28) 

 
The effective matrix for the system is given by: 
 

[𝐾௘௙௙] = 𝑎଴[𝑀] + 𝑎ଷ[𝐶] + [𝐾]                                                                                                                                 (29) 
 
The acceleration vector ൛�̈�ൟ

଴
 is obtained by: 

 

൛�̈�ൟ
଴

= [𝑀]ିଵ ቀ{𝑅௘௫௧}଴ − [𝐾]{𝐷}଴ − [𝐶]൛�̇�ൟ
଴

ቁ                                                                                                        (30) 

 
where the initial displacement vector {𝐷}଴ is given by the static analysis of the beam. In this paper, the initial velocity 
൛�̇�ൟ

଴
 is assumed zero. As the mass matrix [𝑀] is a non-singular symmetric matrix, it has an inverse that can be 

substituted in Eq. (30) to obtain the initial acceleration vector ൛�̈�ൟ
଴
. The Newmark remaining integration parameters are 

given by: 
 

𝑎଴ =
ଵ

ఉ௱௧మ , 𝑎ଵ =
ଵ

ఉ௱௧
, 𝑎ଶ =

ଵ

ଶఉ
− 1, 𝑎ଷ =

ఈ

ఉ௱௧
, 𝑎ସ =

ఈ

ఉ
− 1, 𝑎ହ = 𝛥𝑡 ቀ

ఈ

ଶఉ
− 1ቁ                                                            (31) 

 
where Δ𝑡 is the incremental time step. The calculations routine starts with the determination of the initial acceleration 
vector in Eq. (30), with the external load vector {𝑅௘௫௧}଴, the displacement vector {𝐷}଴, and the velocity vector ൛�̇�ൟ

଴
 

known from the initial conditions. Then, Eq. (26) is solved for {𝐷}ଵ by the solution of a set of linear algebraic 
equations, as the external load, the dumping, and the stiffness matrices of the system are known to each time step. Next, 
with Eq. (27), and Eq. (28) can be obtained the vectors ൛�̈�ൟ

ଵ
, and ൛�̇�ൟ

ଵ
. In the next step, Eq. (26) is solved for {𝐷}ଶ, and 

so on. 
 
4. RESULTS 
 
In the finite element analysis, 40 elements were used. The total time analysis is 4, 0[𝑠] with equal time steps of 
∆𝑡 =  0, 01 [𝑠]. The free span of the beam has a length of 1,0 [𝑚]. The outside diameter of the pipe is 10,0 [𝑚𝑚], with 
a wall thickness of 0, 1 [𝑚𝑚]. The pipe material is steel, with 207 [𝐺𝑃𝑎] elastic modulus, and a density of 
8.000 [𝑘𝑔 𝑚ଷ⁄ ]. The fluid considered is water, with a density of 1.000 [𝑘𝑔 𝑚ଷ⁄ ]. The fluid was considered with a 
constant velocity 𝑣௙ = 𝑈 [𝑚 𝑠⁄ ]. It was considered a set of different flow velocities to study the dynamic behavior of 
the system. The data and parameters used are in agreement with those found in (Grant, 2010), to compare the results 
obtained. 
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4.1 Static analysis 
 
For comparison of FEA static analysis with the theoretical results, a point load of −6.1 × 10ିଵ [𝑁] was applied due to 
end-mass weight attached at the free end of the pipe. Moreover, it was considered the distributed load due to the pipe 
and the fluid self-weights per unit length. The deformation along the horizontal axis is shown in Fig. 2a. The theoretical 
static deflection at the free end, due to linear pipe & fluid weights, and the applied gravitational force of the end-mass is 

given by (Timoshenko, 1986): 𝑓௧௛ =
 ௅య

ଶସாூ
ൣ3 ∙ ൫𝑚௧ + 𝑚௙൯ ∙ 𝐿 + 8 ∙ 𝑚 ∙ 𝑔൧. Substitution of the problem data, gives 

𝑓௧௛ = −0.0415 [𝑚]. The result for FEA, given by the Matlab code is 𝑓ிா஺ =  −0.0415 [𝑚]. It can be seen that the 
values agree, for both theoretical, and FEA static analysis. 
 
4.2 Dynamic analysis 
 
Primarily, the natural frequencies of the system for two load conditions - the pipe full of fluid, and with the addition of 
the end-mass over the previous condition, were analyzed. For both conditions, the flow velocity is zero. The dynamic 
load was applied to the system by a pulse load with the intensity of 2 × 10ିଵ  [𝑁], downward, during the time interval 
of 0, 01 [𝑠]. It can be seen in Table 1 the values of oscillation- amplitudes and periods, for the two configurations, that 
is, with and without the end-mass attached at the free end. The vertical displacement of the free end is therefore due 
only to the pulse load applied. After that, for comparison of the dynamic behavior, is placed an end-mass 𝑚 =
0.0675 [𝑘𝑔] at the free end. The dynamic response of the system is shown in Fig. 2b. The variation for the amplitude 
with the end-mass, relative to the free motion, for 𝑣௙ = 0 [𝑚 𝑠⁄ ] is 0.0321 0.0307⁄ = 1.0456, or, +4.56%. That is, the 
amplitudes in both cases are approximately the same with a low percentage of variation. Thus, the dynamic rigidity of 
the system does not vary significantly by the presence of the end-mass, for the case of full-pipe with no flow of fluid. 
On the other hand, the variation of the period of oscillation is 0.3441 0.1854⁄ = 1.8562, or, +85.62%. The effect of 
the end-mass on the oscillation-period of the beam is significantly greater than the configuration without the end-mass. 
Conversely, the frequency is reduced by −46.12%, with a value of 2.906 [𝐻𝑧].  
 

                
 
Figure 2a) Static deformation of the beam. 2b) Dynamic behavior for free vibration for full pipe-beam ൫𝑣௙ = 0 [𝑚 𝑠⁄ ]൯. 
 

Table 1. Amplitudes and periods of oscillations for different configurations 
 

Configuration Amplitude [m] Period [s] 
No end-mass 0.0307 0.1854 

End-mass 0.0321 0.3441 
 
The new dynamic equilibrium point is −0.026 [𝑚]. It has to be noted that all values were given by Matlab code (see 
Fig. 3). The end-mass had dislocated the dynamic equilibrium point to a new position, due to gravity. Thus, the main 
effects observed due to end-mass on the dynamic behavior were to decreasing the oscillation-frequency due to inertia, 
and to dislocating the dynamic equilibrium to a new point due to gravity. Its influence was not to dumping the 
oscillation-amplitude of the system, as expected. Indeed, the observed amplitudes in both configurations were 
approximately the same, as can be seen in Table 1. Next, the pipe is full of water, with a fixed flow velocity 𝑣𝑓 =
1.5 [𝑚/𝑠], and with variable end-masses attached. The dynamic behavior is shown in Fig. 3a. Now, the system presents 
a dumping character oscillation. For the end-mass equals to zero kilograms, the system oscillates about the zero vertical 
dynamic equilibrium point. This is shown in red color in Fig. 3a. For the end-masses of 𝑚 = 0.0625 [𝑘𝑔], and 𝑚 =
0.100 [𝑘𝑔] the system is dislocated to a new equilibrium-point, according to each mass, downward, by the gravity 
force, as before. Again, the masses have the effect of reducing the system-frequencies. It can be observed that for 
increasing mass values the system oscillates in increasing time intervals. With no mass, in about 2.0 [s] the oscillatory 
amplitude is near to zero. On the other hand, for a mass of 0.100 [𝑘𝑔], after 4.0 [𝑠] the oscillation-amplitude is still 
present. This is due to the combined actions on the system response due to the dumping effect of Coriolis forces, the 
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lifting effect of the centrifugal forces with time, besides the increased oscillation-periods due to the inertia of the end-
masses. Next, is attached the end-mass of a fixed value of 𝑚 = 0.0625 [𝑘𝑔] at the free end. The system behavior is 
again dynamically dumped due to fluid flow. Same as above, the effect of the end-mass is to dislocating the equilibrium 
point of the system downward, to a new dynamic equilibrium point located at approximately −0.026 [𝑚], bellow the 
null vertical equilibrium point, as it can be seen in Fig. 3b. The value found was the same for the simulation as shown in 
Fig. 2b. As it can be seen in Fig. 3b, with a fixed value of end-mass, increasing values of flow velocities induce 
increasing dumping effects on the system. It can be noted that for flow velocity of 30 [𝑚/𝑠] the dumping effect is 
severe, with very little oscillations, after approximately 0.34 [𝑠]. Furthermore, for t=0 [s] the system starts from a point 
bellow −0.0415 [𝑚], valid for all anterior analysis data, that is, starts from the point −0,0454 [𝑚], and stabilizes at a 
point at approximately −0,0284 [𝑚] which is also, different from the anterior equilibrium point, i.e., −0.026 [𝑚]. This 
particular dynamic behavior can be explained as the result of the superposition of the combined effects of the fluid flow, 
and the weight of the end-mass. The fluid flow tends to lift the end-mass, due to centrifugal forces acting upward. The 
Coriolis acceleration of fluid flow contributes to the dumping behavior of the system. 
 

              
 

Figure 3a) Dynamic dumping behavior of the beam. 3b) Dynamic dumping behavior of the beam in the presence of 
end-mass 𝑚 = 0.0625 [𝑘𝑔], combined with variable flow velocities. 

 
On the other hand, the weight of the end-mass pushes the whole system in a downward direction due to the gravitational 
field. Finally, the frequency responses of the system were analyzed. The flow velocity ratio increases, the frequency 
ratio of the system decreases. The first critical frequency for the pipe-fluid system from Rayleigh-Ritz exact solution is 

given by 𝑤௖ =
ଷ.ହଵ଺

௅మ ∙ ට
ா∙ூ

௠೑ା௠೛
= 31.18 [

௥ௗ

௦
], where the linear masses 𝑚௙ , 𝑚௣ are referred to as the fluid and pipe linear 

masses, respectively. In the presence of the dumping effect, the numerical value of the minimum natural    frequency   
of    the    system   is   given by the minimum absolute value of the imaginary parts of the eigenvalues from the 

Hermitian matrix, 𝐻 = ቂ−𝑀ିଵ𝐶 −𝑀ିଵ𝐾
0 𝐼

ቃ. 

 

              
 
Figure 4a) Dynamical response at the critical velocity 𝑣௖ = 19.17 [𝑚/𝑠]. 4b) Chaotic form of acceleration at the free-

end with the critical flow velocity 𝑣௙ = 19.17 [𝑚/𝑠] 
 

At the critical flow velocity 𝑣௖ =
ଵ.଼଻ହ

௅
∙ ට

ா∙ூ

௠೑
= 19.17 [

௠

௦
] the displacement at the free end starts from −16 ×  10ିଷ [𝑚] 

and goes to zero in about 0.2 [𝑠] (see Fig. 4a). It can be seen in Fig. 4b the chaotic behavior of the acceleration at the 
free end of the pipe, with the critical flow velocity of 19.17 [𝑚/𝑠]. 
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5. CONCLUSION 
 
The fluid-pipe system, in the presence of the end-mass, for different flow velocities, starts with the characteristic of a 
phenomenon known as jump, followed by a damped oscillation, over time. The combined effects of Coriolis and 
Centrifugal forces have a remarkable influence on the system dynamic behavior. The Coriolis Effect acts as a damping 
force reducing the system amplitude oscillation, over time. On the other hand, the Centrifugal forces tend to raise the 
fluid-pipe system as a whole. Additionally, the combined action of these two forces, with the gravitational force acting 
on the end-mass, is to move the dynamic equilibrium point to a new point located above the static equilibrium point. 
Another important point refers to the influence of the fluid flow velocity on the dynamic response of the system. As the 
flow velocities increase, the natural frequencies of the system decrease. In addition, the system has a chaotic behavior at 
the theoretical critical flow rate. We note here that some limitations assumed in this article significantly influence the 
results of the dynamic behavior of the system. This opens the need to take into account, in future analyzes, some 
hypotheses such as variable flow density, horizontal displacements, and shear effects, citing only some of them. 
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