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Abstract. This work aims to design the wing-fuselage attachment component of an AeroDesign aircraft using topology
and Lattice optimizations in order to increase the structural efficiency of the aircraft. For the execution of the work,
the maximum loads on the component were calculated, and then the optimizations were carried out individually. At
the end, the values of tension, weight, displacement, safety factor and natural frequencies were compared. Finally, it
is concluded that for the proposed case the Lattice optimization presents more attractive results, despite having a more
complex manufacturing method.

Keywords: Topology optimization. Lattice Structure. Structural Efficiency. AeroDesign.

1. INTRODUCTION

The aeronautical industry is characterized as one of the most dynamic society’s economic sectors. Through it, one
of humanity’s greatest technological leaps was provided, accelerating social relations in all areas. Facing a constant
need to renew itself, associated with the need to reduce weight, the aeronautical industry has always sought solutions to
increase the efficiency of its projects. With that said, there are several areas where alternatives can be proposed to increase
structural and energy efficiencies.

Meanwhile, in the academic world, projects like AeroDesign, Formula SAE and Baja encourage students to think about
innovative solutions, inserting them in a highly competitive and educating environment. Such projects enable students to
develop important knowledge related to the mobility industry.

In this context, especially AeroDesign faces a major challenge related with optimizing the weight of radio controlled
aircraft developed by students. In order to obtain a competitive aircraft, load studies, material selection and structural
optimizations must be developed. The methodologies used in the project are very similar to the stages experienced in the
industry, and therefore such projects are of great importance for the student’s education.

This work proposes the application of two different approaches for the optimization of one of the AeroDesign aircraft
most important structural parts: The wing-fuselage attachment component.

The first approach proposed is called topology optimization. Starting from a pre-defined shape, usually called by
Design Space, topology optimization consists to remove as much material as possible, maximizing the stiffness of the
part. An example of topology optimization can be seen in Fig. 1(a).

The second optimization technique applied is the Lattice optimization. According to Maconachie et al. (2019), Lattice
structures can be defined as topologically ordered, three dimensional open-celled structures, with strut elements connect-
ing themselves through cell nodes, usually repeated in a specific pattern, allowed to be manufactured normally through
additive manufacturing. An example of an aeronautical bracket made with lattice can be seen in Fig1(b).

On one hand, lattice structures can be analyzed using classical solid mechanics theory, as a domain composed of nodes
and trusses. On the other hand, it should also be considered as a meta-material, with is own properties, given the profound
changes on mechanical, thermal and electrical behavior it brings. This interpretation allows a direct comparison between
Lattice structures and common materials to be made (Ashby, 2006).

Optimization regarding Lattice is given by the correct distribution of cell positioning, length, minimal and maximal
truss diameter for a given design space. To deal with lattice structures in a design perspective, one should be aware that
they can be divided into two main groups: stretch- and bending-dominated structures. They differentiate themselves,
being more adequate to distinct applications (Ashby, 2006).

Both Lattice and topology optimizations were realized on the aircraft attachment component with common objectives:
maximize stiffness, maximize modal frequencies and minimize mass.
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Figure 1. Topology(a) and Lattice (b) optimization of an aeronautical bracket (3D Systems (a) e Food4Rhino (b)

Finally, the results were analyzed and parameters such as mass, tension, displacement, natural frequencies and safety
factor were compared between the original part and the topology and lattice optimized designs.

This work provides an overview analysis and comparison between two distinct, thus very useful optimization tech-
niques. Although the current work is applied to an AeroDesign project, the results shown can be extended and applied to
a variety of cases due to the high value that both optimization techniques brings to any project seeking high performance,
less amount of material waste and innovative solutions.

2. GENERAL OPTIMIZATION CONCEPTS

Practical problems of structural optimization began to be studied around the 60s in the aeronautical environment, aided
by the emergence of computers as well as by the development of finite element analysis. When seeking to minimize or
maximize an objective function from a variation of parameters such that the imposed restrictions are respected, a general
optimization problem is defined. In a general form, according to Larsson (2016), for an optimization problem to be
executed the following items must be present:

• Design Variables, also known as Optimization variables, denoted as a vector x

• Objective or Cost Function, denoted as f(x)

• Equality or inequality constraints, denoted as gi(x) or hk(x)

Each of these items represents a major role for an optimization to occur, therefore a short explanation of them is made.

2.1 Design Variables

The Design variables are the numerical or geometrical inputs that the optimizer algorithm is allowed to change in
order to realize the optimization. They can be divided in two groups: Discrete and Continuous variables:

• Continuous Variables: The variables can be represented by a continuous function, which means that it can assume
any value respecting the optimization restrictions.

• Discrete Variables: The variables are represented by a discrete function, and therefore they can only assume
predetermined values.Ex:. Number of bolts, material selection, commercial beam cross sections.

According to Arora (2007) an important factor when designing an optimization problem is the fact that usually prob-
lems with discrete variables tend to have considerably higher computational costs when compared to problems with
continuous variables, even though the number of feasible solutions for a discrete problem is finite, while being infinite for
continuous problems.

2.2 Objective Functions

A normal approach when designing an engineering problem is to find an adequate solution that satisfies the functional
requirements of the problem. It is though very common to find more then one acceptable design that suits the requirements.
The purpose of optimizing is in fact, to find the best values among the ones analyzed. Thus, a criterion must be chosen
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in order to compare all the given acceptable alternatives. This criteria in respect to which direction the design variable
is optimized is know as objective or cost function. The direction that this criteria is set is governed by the nature of the
problem (Rao, 2019).

In aerospace structural design problems, usually the objective functions are set to minimize the weight of the aircraft.
On another hand, on civil engineering usually the objective function is related to the minimization of the overall structure
cost.

2.3 Constraints

In many optimization problems, the design variables cannot be chosen arbitrarily. According to Silva and Martins
(2003), usually they have to satisfy specific conditions and requirements. The conditions that must be satisfied in order to
make the project feasible are called Design constraints which can be three types:

• Lateral

xmini ≤ xi ≤ xmaxi , i = 1, ...n (1)

• Inequality

gj(x) ≥ 0, j = 1, ...ng (2)

• Equality

hk(x) = 0, k = 1, ...ne (3)

Despite this , they can also be classified as local or global constraints. Local constraints refer to a local point on a
domain, like tension on a determined design area. Global constraints are usually related to the whole domain, and can be
exemplified as volume, maximum displacement or resonance frequency.

Therefore, in a generic optimization model where x is the design variable, f(x) is the objective function and hk(x)
and gj(x) are respectively, constraints of equality and inequality, an optimization problem can be defined as the following
formulation:

Minimize/Maximize f(x) (4)
So that gj(x) ≥ 0; j = 1, ...ng; (5)

hk(x) = 0; k = 1, ...ne (6)

3. TOPOLOGY OPTIMIZATION

The concept of a topology optimization can be explained as: Given a specific volume of a part, usually pre-defined
in the preliminary stages of the project, find the optimal distribution of material within this volume, given the boundary
conditions and loading for a given situation.

Through this distribution, you can have an overview of which regions of the part in question are essential, and which
can be discarded. Naturally, this effect not only causes a significant weight reduction, but also changes the stiffness and
the final volume of the part.

In mathematical terms, a topology optimization creates an optimized sub domain Ωopt ⊂ Ω where Ω is the domain of
total material available. The domain is divided into discrete elements and the importance of each element in the structural
response is assessed by a density value ρe. This is incorporated in the stiffness properties of the structure by defining a
Young modulus for each element, which is dependent of the density value. This procedure is represented in Eq. 7 and
8, where E0 represents the Young Modulus of the material and the density value can assume the value of unity (in the
optimized domain) or zero (in the empty domain). The equation 9 indicates a volumetric constraint, that is, the final
volume of the optimized domain must be less than or equal to the initial volume V (Larsson, 2016). One can observe
what has been described through Fig.2.

E(ρe) = ρeE0; (7)

ρe =

{
1 if e ∈ Ωopt
0 if e ∈ Ω \ Ωopt

}
(8)
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Figure 2. Optimized Design Space representation - Adapted (Roos and Will, 2001)

∫
Ω

ρdΩ = V ol(Ωopt) ≤ V (9)

According to Altair (2018), it is necessary that some mathematical tools are introduced to the software algorithm so that
these elements of intermediate density can be penalized. The method utilized to do that is called SIMP ( Solid Isotropic
Material Penalization). Its effect is to transform the equation 8 into a continuous function, allowing the density to assume
intermediate values between 0 and 1. The penalty tool used in the SIMP method can be represented mathematically as:

E(ρe) = ρpeE0 (10)
ρe ∈ [ρmin, 1], p > 1 (11)

The effect SIMP method causes to the relative Young modulus ratio can be seen in Fig.3

Figure 3. SIMP Effect on Young Modulus Ratio (DassaultSystemes, 2020)

3.1 The checkerboard effect

The checkerboard effect is a problem related to bad parameter settings when realizing topology optimization. It
can be described as an inaccurate, bad element densities distribution. This distribution tends to form a checkerboard
pattern seen in Fig.4.In 2001 Sigmund (2001) developed a simple but efficient algorithm capable of realizing a two
dimensional topology optimization with MATLAB for educational purposes. When changing its available parameters
(Volume fraction, filter radius min. size and penalization factor) it is possible to see what influence each parameter has to
the final result. This experiment was made and is illustrated in Fig.4
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Figure 4. Parameters influence on topology optimization

3.2 General formulation

With all the previous concepts made clear, it is possible to define the solution to a topology optimization as:

Minimize C(ρ)
Subject to State Function constraint (Directional displacement);

Manufacturing Constraints (Simmetry, Directional extrusion, Etc.)

Where C(ρ) means a compliance objective function , which in another words means that the objective function seeks
to minimize the strain energy, which is the same as maximizing the stiffness.

4. LATTICE STRUCTURES

The development of increasingly lighter structures, associated with advances in additive manufacturing methods, cur-
rently allows for almost infinite design freedom, usually limited by the designer’s creativity. This has been explored not
only through topology optimizations, but also through the creation of reticular structures known as Lattice, which replace
a solid body causing profound changes in the mechanical characteristics of a part.

Studies regarding the behavior of this type of structure began to emerge in the early 1960s with the work of Gent
and Thomas in 1959, and Patel and Finnie in 1970 (Ashby, 2006). Since then more studies have emerged making this
topic more and more widespread, being accelerated mainly from the 90s with the expansion of additive manufacturing
technology.

The structures are formed by trusses connected through nodes that are repeated in a certain pattern of organization.
The figure 5 illustrates how this type of structure is configured.

Lattice geometries are divided into two behavior categories: Stretch- and Bending-dominated structures. This division
is given by Maxwell equations for three dimensional Lattices:

M = b− 3j + 6 = s−m (12)

Where M is Maxwell’s number, b is the number of struts, j is the number of frictionless joints, s is the number of self
stress states and m the number of mechanisms. The Lattice structures can therefore be defined by Maxwell’s number: For
M < 0 the structure is either a mechanism or a bending-dominated lattice, depending whether the joints are locked or
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Figure 5. Multiple Lattice geometries (3DPrinting, 2019)

not. For M = 0 it is considered to be a stretch-dominated lattice, and finally for M > 0 the structure is considered to be
in a state of self-stress.

Their use vary according to the type of application. The bending dominated structures are indicated to applications
that require energy absorption, such as impacts cases. On the other hand, stretch-dominated structures are more indicated
for light weight structural applications (Ashby, 2006). This comparison can be made when observing the tension-yield
curve on Fig 6.

Figure 6. Stress-Strain curve for Stretch- and bending-dominated structures (Ashby, 2006)

Lattice are organized in the form of a crystalline structure, such as Cubic structures with centered bodies (CBC),
Cubic with centered faces (CFC), and their variants with transverse Z trusses (Maconachie et al., 2019). The behaviour
of a Lattice can be determined by three main characteristics: Material, Cell geometry and relative density ρ̃

ρe
, where ρ̃ is

the lattice density, and ρe is the material density. These correlations can be seen on Fig7.

Figure 7. Lattice design variables (Ashby, 2006)

5. CASE STUDY

This work seeks to optimize a wing-fuselage attachment component manufactured through stereolithography (SLA),
an Additive Manufacturing (AM) technique that allows high level of precision and good surface finish, as well as the use
of resins that simulate high hardness ABS, with elevated Young Modulus and an acceptable density for an AeroDesign
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project. The material properties can be seen in Tab.1,
The boundary conditions were set as two completely fixed pins (C1 and C2) and one translation constraint (C3) locked

in Z for the surface in contact with the round tube section spar of the wing. This last constraint was used to guarantee
there wouldn’t be any relative displacement between the spar and the wing-fuselage attachment. The aircraft with the
non-optimized wing-fuselage attachment detail is shown in Fig.8.

Two additional manufacture constraints were set: The first on is a symmetry plane displayed in red, and the other one
is a split draw direction to guaratee the topology result would be possible to be constructed not only with A.M but also
with laser cut or water jet technologies.

Figure 8. Aircraft and Design Space with boundary conditions and applied loads (Author)

Table 1. Material Properties (Proto3000, 2020)

Material 3D Systems Accura 55 Resin
Failure Criteria Von Mises

Density (Kg/m3) 1200
Young Modulus E (MPa) 3200

Poisson 0.35
Yield Strength (MPa) 63,4

The loads were determined by following the methodology applied by Barros (2001), where the load distribution
throughout the aircraft wingspan is calculated by utilizing the principles of Stender approximation. This method assumes
that the load distribution along span is proporitonal to the geometric chord mean of the actual wing and an elliptical wing
with same area and wing span.

The shear force, bending moment and torsion moment acting along the wing half-span are shown in Fig.9. The load
values acting on the attachment component were assumed at x = 0 position and are given in Tab. 2.

Figure 9. Wing Loads

Table 2. Applied Loads

Shear Force 210 N
Bending Moment 104 N.m
Torsional Moment -49 N.m
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6. RESULTS

The topology and Lattice optimizations were run with OptiStruct through the software Inspire using the setup displayed
in Fig.10. Both optimizations had objectives such as maximizing the stiffness and natural frequencies while the mass was
minimized.

Figure 10. Topology (Left) and Lattice (Right) optimization setups

The following parameters were compared: Mass, Max. Displacement, Von Mises stress, natural frequencies and safety
factor. A review of the computational specs used for the analysis can be seen in Tab. 3. The geometry results are displayed
in Fig. 11 and 12. The numerical results comparison are displayed in Tab. 4. A modal optimization was run in order
maximize the frequencies to evaluate the modal behavior from both structures. The results of natural frequencies are
shown in Tab.5 and the corresponding mode shapes in Fig.13.

Table 3. Computational Resources

CPU GPU RAM Average Opt. Time
Intel Core i7-9750H - 2.6Ghz NVIDIA GeForce GTX 1660 Ti 16 Gb 10 min.

Figure 11. Maximum displacement - (a) Lattice and (b) Topology

It is noted that the two optimization methods showed benefits in relation to the original part, with the exception of the
maximum displacement, which the original part kept the lowest value. The Lattice has an equivalent mass 4% lighter than
the topology design. In addition, the stresses obtained in the Lattice represent a value 23% smaller than that found in the
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Figure 12. Von Mises Stresses - (a) Lattice and (b) Topology

Table 4. Numerical results and comparison between the optimizations and non optimized design.

Model Non-optimized Topology (%) Lattice (%) Lattice
Topo.

− 1 (%)
Mass (g) 219,0 158,4 -28,7% 151,6 -30,8% -4%

Máx. Displ. (mm) 0,3 0,9 179,8% 2,4 667,1% 163%
Von Mises (MPa) 35,0 39,6 13,2% 30,3 -13,4% -23%

Safety Factor 1.8 1,6 -11% 2,1 16,7% 31%

Table 5. Natural frequencies - Original component, Topology and Lattice Optimized.

Natural Frequencies
Vibration

Modes
Non Optimized Topology Var(%) Lattice Var(%) Lattice

Topo
− 1 (%)

1 51,8 40,0 -22,7% 41,2 -20,8% 1,9%
2 152,2 142,4 -6,4% 138,1 -9,2% -3,0%
3 181,2 174,4 -3,7% 178,4 -1,5% 2,2%
4 348,7 268,6 -23,0% 308,8 -11,5% 11,5%
5 406,1 413,8 1,9% 420,2 3,5% 1,6%
6 417,8 426,7 2,1% 431,4 3,2% 1,1%

topology, causing the safety factor to be 31% higher. In contrast, the displacement value in the Lattice represents 163%
of the value found with the topology.

Figure 13. First 6 vibration modes - Non optimized, topology and Lattice design

Regarding the natural frequencies comparison, it can be noted that the Lattice design achieves higher natural frequency
values then the topology design for almost all modes analyzed, with a maximum disparity of 11% on the 4th mode , except
for the second mode, where lattice values is 2.8% lower than the topology value.

In addition to the frequency values, the comparison of mode shapes among the non optimized and optimized structures
shows that the main characteristics of the modes are preserved.
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7. CONCLUSION

The results obtained for the two types of optimizations proved to be efficient for the objectives outlined in an AeroDe-
sign project. By directly comparing two types of optimizations it was possible to explore a wide range of benefits gained
from exploring this field in an engineering project.

At the end of the work, it can be concluded that the two optimizations promoted greater performance without com-
promising the safety of the project. It was possible to reduce up to 31% of mass, decrease the stresses acting on the
component and consequently increase the safety factor of the project.

The displacement observed for the two optimizations was not taken into account as a prohibitive factor, however it
must kept in mind that very high displacements can compromise the mechanical and aerodynamic behavior of the part in
question. For the correct evaluation of the influence that this factor has on the project as a whole, it would be necessary
to carry out coupled analysis connecting the structural model to the aerodynamic model, which is not the objective of this
work.

It has been shown that Lattice structures have a promising potential to further leverage the gains made with structural
optimizations. The lattice optimization provided a mass reduction of 4% in comparison with the topology optimization,
for the same maximum volume of material removed. In addition, the natural frequencies of Lattice design reached higher
values than the topology ones in most of the analyzed modes, which not necessarily poses as an advantage for this study,
but rather as a behavior to be kept in mind when using such structures.

Finally, the benefits brought by either type of optimization, whether topology or Lattice, are evident. Therefore,
regardless of the method chosen, a high degree of commitment to all possible applications to which the part will be
subjected is necessary so that there is no inconsistencies, thus ensuring the high performance and safety of the project. .
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