

XXVII Congresso Nacional de Estudantes de Engenharia Mecânica 08 a 12 de fevereiro de 2021, Curitiba, PR, Brasil

SIMULAÇÃO NUMÉRICA DO ESCOAMENTO AO REDOR DE QUATRO CILINDROS EM ARRANJO QUADRANGULAR

Matheus Becker da Silva, matheus.silva.009@acad.pucrs.br

Autônomo

Resumo. Neste trabalho, são apresentados os resultados de duas simulações numéricas de um escoamento ao redor de quatro cilindros em arranjo quadrangular. A primeira foi realizada com Re = 200 em DNS (Simulação Numérica Direta) e, logo após, para Re = 3000 em LES (Simulação de Grandes Escalas), utilizando o código Incompact3d. Foram analisados os coeficientes de arrasto e sustentação, além da frequência de vórtices pelo número de Strouhal. Comparando, os resultados das simulações entre Re = 200 e Re = 3000, mostraram que com o aumento do número de Reynolds, os arrastos dos quatro cilindros caíram. Para a sustentação, houve uma redução nos cilindros à montante, entretanto houve um aumento para os cilindros à jusante. Em relação à frequência de vórtices para Re = 200, os quatros cilindros tiveram um comportamento periódico, assim tendo exatamente o mesmo número de Strouhal. Para Re = 3000, os cilindros 1, 3 e 4, a frequência de vórtices foi maior que para os mesmos cilindros com Re = 200, com exceção do cilindro 2, onde foi menor.

Palavras chave: Arrasto, Sustentação, Reynolds, Strouhal.

Abstract. The present work, are presented the results of two numerical simulation of a flow around four cylinders in square arrangement. The first were performed with Re = 200 in DNS (Direct Numerical Simulation) and, right after for Re = 3000 in LES (Large Eddy Simulation), using a code Incompact3d. Were analyzed the drag and lift coefficients, besides the vortex frequency by Strouhal number. In comparison, the results of the simulations between Re = 200 and Re = 3000, showed that with the increase in the number of Reynolds, the drag of the four cylinders decrease. For the lift, there was a reduction of the upstream cylinders, however increased in the downstream cylinders. For the frequency of vortices in Re = 200, the four cylinders had a periodic behavior, thus having exactly the same Strouhal number. For Re = 3000, the cylinders 1, 3 and 4, the vortex frequency was higher than for the same cylinders with Re = 200, with exception 2, where it was lower.

Keywords: Drag. Lift, Reynolds, Strouhal.

1. INTRODUÇÃO

O estudo de escoamentos sobre cilindros, através das simulações numéricas, tem como sua principal utilidade entender o fenômeno físico que está por trás deste tipo de escoamento. Sua principal aplicação se dá em trocadores de calor de casco e tubo "Fig. 1", onde o arranjo de cilindros poderá estar em dois tipos de disposição, alinhado ou alternado. Porém, há outros tipos de aplicações, principalmente relacionados com a frequência de desprendimento de vórtices sobre obstáculos, por exemplo, em plataformas petrolíferas e pontes que estejam em contato direto com o ar ou com a água.

Figura 1. Trocador de Calor de Casca e Tubo Fonte: trocadordecalor.com.br

Figura 2. Plataforma auto elevável P-5 Fonte: Petrobrás

Uma das aplicações do escoamento externo em torno de um arranjo de cilindros é sobre uma plataforma de elevação petrolífera "Fig.2", principalmente durante a movimentação do fluido, o ar em sua parte superior e a água em sua parte

inferior. Caso a frequência natural de vibração das colunas for igual à frequência de desprendimento de vórtices do ar, a força de oscilação poderá danificar a plataforma. Deste modo, as colunas têm a função de separar os vórtices forçandoos a se dividir em diferentes momentos ao longo da coluna.

Por fim, o objetivo deste trabalho é investigar o comportamento de um escoamento externo ao redor de quatro cilindros circulares em arranjo quadrangular, com Re = 200 e 3000, razão de espaçamento (L/D) = 2 (a razão de espaçamento é a distância entre os centros de dois cilindros), e em duas dimensões espaciais (2D). As simulações numéricas foram realizadas em duas dimensões, com dois tipos diferentes de simulações. Para Re = 200 foi usado o método de Simulação Direta Numérica (DNS), e para Re = 3000 pelo método de Simulação de Grandes Escalas (LES).

2. METODOLOGIA

2.1 Domínio computacional

As equações que serão utilizadas nesta simulação são a equação da continuidade "Eq.(1)" e a equação de Navier-Stokes "Eq.(2)", para fluidos incompressíveis, definidos na forma:

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = \frac{-\partial p}{\partial x_i} + \frac{l}{Re} \frac{\partial^2 u_i}{\partial x_j^2}$$
(2)

onde, (x_i) é o vetor posição, (u_i) é o vetor velocidade, (t) é o tempo adimensional, (p) é a pressão, (Re) é o número de Reynolds.

2.2 Validação numérica

A validação numérica foi realizada no LASET (Laboratório de Simulação de Escoamento Turbulento) da PUCRS, utilizando o código Incompact3d (Laizet e Li, 2011).

As discretizações espaciais (quantidade de pontos por diâmetro) utilizadas para modelar o refinamento da malha utilizada nas simulações numéricas nas três direções do escoamento ("Eq.(3), Eq.(4) e Eq(5)"), são:

$$\Delta x = \frac{n_x}{L_x} \tag{3}$$

$$\Delta y = \frac{n_y}{L_y} \tag{4}$$

$$\Delta z = \frac{n_z}{L} \tag{5}$$

onde, $(\Delta x, \Delta y, \Delta z)$ são as discretizações espaciais, (n_x, n_y, n_z) são o números de pontos utilizados em cada um dos comprimentos, e (L_x, L_y, L_z) , são os comprimentos adimensionais do escoamento,

Neste trabalho, como a simulação é realizada em duas dimensões, a discretização espacial nos dois graus de liberdade de um plano (x e y) é de 40 pontos por diâmetro "Eq. 6", assim, para que a malha utilizada nas simulações fique quadrada.

$$\Delta x = \Delta y = \frac{40}{D} \tag{6}$$

Em relação à discretização em *z*, foi utilizada uma resolução baixa, apenas para que a simulação pudesse acontecer, não interferindo no resultado final.

A fim de que a simulação fosse executada, foi utilizado um intervalo de tempo (time step) de $\Delta t = 0,0005$. E o tempo de duração das simulações é simbolizado por (t_{sim}).

	Re	n_x , n_y , n_z	L_x , L_y , L_z	Δ_t	t _{sim}
Um cilindro DNS	200	801, 721, 0.2	20, 18, 6	0,0005	137 h
Quatro cilindros DNS	200	881, 801, 0.2	22, 20, 6	0,0005	168 h
Quatro cilindros LES	3000	881, 801, 1	22, 20, 8	0,0005	183 h

Tabela 1. Parâmetros utilizados para a realização das simulações numéricas

Desta forma, foram realizadas três simulações numéricas, utilizando os parâmetros descritos anteriormente na "Tab.1". A primeira foi à validação numérica de um escoamento ao redor de um cilindro circular com Re = 200 através do método DNS "Tab.2". As outras duas simulações desenvolvidas neste trabalho são, a de quatro cilindros com Re = 200 pelo método DNS, e também, com Re = 3000 pelo método LES.

Tabela 2. Resultados encontrados na validação numérica com Re = 200, pelo método DNS, em comparação com resultados de outros artigos.

Trabalhos Anteriores	$\overline{C_{D}}$	$C_{I,\mathrm{pwg}}$	St
Braza, Chassaing e Ha Minh (1986)	1,35	0,55	0,2
Liu, Sung e Zheng (1998)	1,35	0,49	0,192
Zhang e Dalton (1998)	1,32	0,68	0,198
Farrant, Tan e Price (2000)	1,36	0,51	0,196
Meneghini et al. (2001)	1,3	0,50	0,196
Lam, Gong e So (2008)	1,32	0,426	0,196
Qu et al. (2013)	1,32	0,457	0,196
Lu et al. (2014)	1,34	0,69	0,196
Resultados deste Trabalho	1,45	0,576	0,206

onde, $(\overline{C_D})$ é o coeficiente de arrasto médio, $(C_{L_{RMS}})$ é o desvio padrão do coeficiente de sustentação e (St) é o Número de Strouhal.

2.3 Configuração do escoamento

As simulações numéricas realizadas neste presente trabalho, são de escoamentos para Re = 200, pelo método DNS e Re = 3000, pelo método LES, em duas dimensões espaciais (2d), de um escoamento sobre quatro cilindros circulares em configuração quadrática com a distância entre os centro dos cilindros de 2 (dois) diâmetros (L = 2D), tanto para o comprimento longitudinal (S_L) e transversal (S_T) "Fig. 3".

Figura 3. Configuração do escoamento, onde (*U*) é a velocidade do escoamento, (*D*) é o diâmetro do cilindro, $(\frac{S_L}{D}, \frac{S_T}{D})$ são as distâncias entre os cilindros longitudinais e transversais respectivamente, (L_x, L_y, L_z), são os comprimentos adimensionais do escoamento. Cilindros à montante (1 e 2). Cilindros à jusante (3 e 4)

3. RESULTADOS

3.1 Simulação numérica utilizando Re = 200, pelo método numérico DNS

Figura 4. Variação dos coeficientes de arrasto (Esquerda) e sustentação (Direita), em relação ao tempo adimensional (t_{adim}) para Re = 200.

Nº Cilindro	$\overline{C_D}$	$C_{D_{RMS}}$	$\overline{C_L}$	$C_{L_{RMS}}$	St
Cilindro 1	1,540	0,023	-0,184	0,067	0,192
Cilindro 2	1,540	0,023	0,184	0,068	0,192
Cilindro 3	0,116	0,159	0,105	0,537	0,192
Cilindro 4	0,109	0,159	-0,104	0,531	0,192

Tabela 3. Resultados encontrados referentes a este trabalho para Re = 200

onde, $(\overline{C_D} \in \overline{C_L})$ são os coeficientes médio de arrasto e sustentação respectivamente, $(C_{D_{RMS}} \in C_{L_{RMS}})$ são os desvios padrão destes coeficientes e (St) é o Número de Strouhal

Conforme os resultados obtidos, foram verificados no arrasto, que há uma semelhança de comportamento entre os cilindros 1 e 2, e dos cilindros 3 e 4. No gráfico "Fig.4- Esquerda" a semelhança é observada pela sobreposição dos resultados obtidos pelos cilindros 1 (roxo) e 2 (verde) (roxo + verde = azul), e pelos cilindros 3 (azul claro) e 4 (marrom claro). Sobre os cilindros à jusante, é notável que a partir do $t_{adim} \approx 60$, o perfil dos valores do arrasto do cilindro 3 começa a "sair da sombra" do cilindro 4, o que justifica a diferença entre os valores médios de arrasto desses cilindros. Portanto, o arrasto para este arranjo de cilindros, tem um comportamento semelhante, tanto para um par de cilindros de posição "side-by-side", como também em posição de tandem. Os valores do arrasto entre o par de cilindros frontais e o par de cilindros são iguais, característico de um escoamento em "side-by-side". A influência do arrasto dos cilindros 1 e 2, nos cilindros 3 e 4, é devido a esteira formada pelos cilindros à montante "Fig.5-a)", para pequenas razões de espaçamento, uma particularidade de um escoamento em tandem.

Figura 5. Imagem da simulação numérica com Re = 200 para $t_{adim} = 70$. a) velocidade longitudinal b) velocidade transversal

Em relação aos resultados da sustentação "Fig.4-Direita", foi diagnosticado que os cilindros 1 e 4 tem sustentação negativa, e os cilindros 2 e 3, positiva. Esse fato foi determinado pelos estudos de (Meneghini et al., 2001) e (Sarv-ghad-Mogahaddan e Nooredin, 2011), devido à força de repulsão entre os cilindros superiores e inferiores, característico de um par de cilindros em posição "side-by-side". Em termos de magnitude, a sustentação, também é caracterizada pelos cilindros em posição "tandem", pois há uma diferença significativa "Fig.4-Direita" da sustentação dos cilindros 1 e 2 em relação aos cilindros 3 e 4. Como os cilindros 1 e 2 estão em posição à montante do escoamento, têm praticamente o mesmo valor que os estudos de (Meneghini et al., 2001) e (Sarvghad-Mogahaddan e Nooredin, 2011), já que não há nenhum obstáculo que possa modificar a sustentação destes cilindros. Diferentemente dos cilindros 3 e 4, onde os cilindros frontais interferem na sustentação.

Analisando a "Fig.5-a)" com o gráfico de sustentação "Fig.4-Direita", é notado para $t_{adim} = 70$, que no cilindro 1 e 4, o desprendimento de vórtices está direcionado para cima, e no cilindro 2 e 3, o desprendimento, está voltado para baixo, coincidindo com o gráfico de sustentação, onde a sustentação está aumentando para os cilindros 1 e 4, e reduzindo para os cilindros 2 e 3.

Outra observação, examinando o gráfico da sustentação "Fig.4-Direita" e a "Fig.5-b)", há uma alternância na velocidade de formação dos vórtices. Por exemplo, se o cilindro 1 e 3 gera um vórtice com velocidade transversal negativa (em azul), o cilindro 2 e 4 formam com velocidade transversal positiva (em vermelho) e vice-versa. Esse comportamento é devido ao escoamento padrão de anti-fase, característico de um escoamento em "side-by-side" (Kang, 2003). Deste modo, a sustentação entre os cilindros 1 e 2, e, os cilindros 3 e 4, apresentam uma diferença de fase de 180° entre eles, característico de um escoamento em "side-by-side".

Para as frequências de vórtices, os resultados do número de Strouhal dos quatros cilindros são iguais. Analisando a sustentação destes cilindros "Fig.4-Direita" ficou demonstrado que, para os pares de cilindros à montante e à jusante tem o mesmo número de Strouhal, por causa do período da sustentação de todos os cilindros serem iguais, característico de um escoamento laminar.

3.2 Simulação numérica utilizando *Re* = 3000, pelo método numérico LES

Figura 6. Variação dos coeficientes de arrasto (Esquerda) e sustentação (Direita), em relação ao tempo adimensional (t_{adim}) para Re = 3000.

Tabela 4. Resultados encontrados referentes a este trabalho para Re = 3000

Nº Cilindro	$\overline{C_D}$	$C_{D_{RMS}}$	$\overline{C_L}$	$C_{L_{RMS}}$	St
Cilindro 1	1,264	0,028	-0,090	0,060	0,2167
Cilindro 2	1,270	0,035	0,069	0,060	0,0667
Cilindro 3	-0,160	0,267	0,236	0,487	0,200
Cilindro 4	-0,250	0,223	-0,253	0,374	0,200

Em relação à simulação anterior, foi verificado que há uma queda no arrasto médio dos cilindros frontais para Re = 3000. Este resultado já era esperado, pois, com o aumento do número de Reynolds o arrasto diminui. Isso acontece, por causa da redução do arrasto por atrito ser maior do que o aumento do arrasto por pressão. Para os cilindros 3 e 4, o arrasto é negativo. Essa característica é semelhante a um escoamento de um par de cilindros em posição tandem, já que, para pequenas razões de espaçamento, o cilindro à jusante tem o arrasto negativo. Este fenômeno acontece por causa do aumento da força contrária ao sentido do escoamento, visto que, o número de Reynolds é maior do que a simulação anterior, e a razão de espaçamento continua a mesma. Comparando as "Fig.5 a)" com a "Fig.7 a)", há uma nítida redução da largura da esteira, entre os cilindros superiores e inferiores, desta maneira, caracterizando a queda do arrasto por atrito de ambos os cilindros.

Figura 7. Imagem da simulação numérica com Re = 3000 para $t_{adim} = 70$. a) velocidade longitudinal b) velocidade transversal

Para a sustentação, a força repulsiva entre os cilindros inferiores e superiores, assim como, para a simulação com Re = 200 existe, porém, comparando com a simulação anterior, a magnitude da sustentação diminui nos cilindros 1 e 2, e

aumenta nos cilindros 3 e 4. A sustentação dos cilindros à montante está de acordo com o trabalho de (Sarvghad-Mogahaddan e Nooredin, 2011), onde há um enfraquecimento da força repulsiva entre os cilindros 1 e 2. Os cilindros à jusante têm um aumento da sustentação devido à turbulência do escoamento, pois os vórtices formados por esses cilindros são maiores do que os cilindros à montante "Fig.7 b)". Isso também é analisado pela "Fig.8", onde a amplitude do espectro de frequência de vórtices dos cilindros à jusante é bem superior ao dos cilindros à montante. Com isso, há uma maior variação na velocidade transversal dos vórtices dos cilindros 3 e 4, desta forma, justificando o maior coeficiente de sustentação, em magnitude "Fig.6 b)", em relação aos cilindros 1 e 2, característico de um escoamento, em "tandem".

Figura 8. Imagem do espectro de freqüência de vórtices dos quatro cilindros para uma simulação com *Re* = 3000, ordenado conforme a "Fig.3"

A frequência de vórtices dos cilindros 1, 3 e 4 "Fig.8" tem um leve aumento, em relação aos mesmos cilindros para Re = 200. Esse aumento era esperado, já que com o crescimento do número de Reynolds, o número de Strouhal também eleva. Entretanto, no cilindro 2, teve uma redução significativa do número de Strouhal, não sendo compreensível o motivo da queda de frequência de vórtices. Analisando a "Fig.8" do cilindro 2, percebe-se que a segunda maior amplitude do espectro, está em torno de $St \approx 0,2$. Como a amplitude dos cilindros 1 e 2 é muito menor que dos cilindros 3 e 4, está de acordo com o baixo coeficiente de sustentação obtido pelo par de cilindros à montante.

4. CONCLUSÕES

Os resultados obtidos das simulações numéricas sobre um escoamento de quatro cilindros em posição quadrangular para Re = 200 e Re = 3000, demonstraram que:

a) Não há interferência, do arrasto, dos cilindros inferiores, para os superiores, porque estão em posições longitudinais diferentes em relação ao escoamento "Fig.5 a)" e "Fig.7 a)". Essa característica é encontrada em um escoamento "side-by-side";

b) Em termos de magnitude, há uma notável diferença do arrasto entre o par de cilindros à montante e à jusante. Isso acontece porque os cilindros 1 e 2, estão à montante do escoamento, não havendo nenhum obstáculo que interfira no arrasto destes cilindros. Já os cilindros 3 e 4, tem os seus arrastos reduzidos, já que, estão dentro esteira de vórtices dos cilindros à montante. Além disso, devido à formação dos vórtices para número de Reynolds elevados, e com razão de espaçamento pequena, os vórtices são formados mais próximos dos cilindros à jusante, criando uma força contrária ao sentido do escoamento. No caso da simulação com Re = 3000, o arrasto destes cilindros é negativo pelo aumento desta força contrária, característica demonstrada em um escoamento sobre cilindros em posição de tandem;

c) Para a sustentação, há uma força repulsiva entre os cilindros inferiores e superiores. Assim, a sustentação é positiva para os cilindros 2 e 3, e negativa para os cilindros 1 e 4, característico de escoamento em "side-by-side";

d) A magnitude da sustentação, para Re = 200, dos cilindros à montante é maior do que os cilindros à jusante. Para Re = 3000, esse comportamento é invertido, reduzindo a sustentação dos cilindros 1 e 2, e elevando dos cilindros 3 e 4. Em relação aos cilindros à montante, conforme o crescimento do número de Reynolds, a força repulsiva diminui entre esses cilindros conforme o estudo de Sarvghad-Mogahaddan e Nooredin (2011) e de Lam, Gong e So (2008). A elevação da sustentação dos cilindros à jusante é devido ao aumento do número de Reynolds, e, por conseguinte, da turbulência do escoamento.

e) Comparando o gráfico de sustentação para Re = 200 "Fig.4-Direita", com a velocidade longitudinal deste número de Reynolds "Fig.5-a)", é percebido que quando o desprendimento de vórtice está voltado para cima, à sustentação esta aumentando; quando está para baixo a sustentação está reduzindo.

f) Também, pelo gráfico de sustentação de Re = 200 "Fig.4-Direita", o par de cilindros à montante, e à jusante tem uma diferença de fase de 180° entre eles, isto está de acordo com a alternância de geração de vórtices. Assim, caracterizando o tipo de escoamento padrão de anti-fase. Desta maneira, comprova o motivo do qual a frequência de vórtices dos quatro cilindros deram exatamente o mesmo resultado. Este fato coincide com os tipos de escoamento de configuração "side-by-side", onde os valores do número de Strouhal, desse par, para baixos números de Reynolds, são os mesmos em magnitude.

g) O número de Strouhal, para Re = 3000, dos cilindros 1, 3 e 4 estão dentro dos resultados esperados para as frequências de vórtices. Porém o espectro de frequência do cilindro 2, apresentou um valor bem abaixo do esperado. Como a amplitude das frequências dos cilindros à montante é muito baixa devido ao baixo coeficiente de sustentação.

5. REFERÊNCIAS

- Afgan I., Kahil Y., Benhamadouche S., Sagaut P. "Large eddy simulation of the flow around single and two side-byside cylinders at subcritical Reynolds numbers"; *Physics of Fluids*, 23^a Edition, Julho/2011.
- Alam, Md. Mahbub; Moriya M.; Takai, K.; Sakamoto, H. "Fluctuating fluid forces acting on two circular cylinders in a tandem arrangement at a subcritical Reynolds number"; *Journal of Wind Engineering and Industrial Aerodynamics*, Volume 91, Edição 1-2, Páginas 139-154, Janeiro/2003.
- Braza, M.; Chassaing, P.; Ha Minh, H. "Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder"; *Journal of Fluid Mechanics*, Volume 165, Páginas: 79-130, Abril/1986.
- Farrant, T.; Tan. M.; Price, W.G. "A cell boundary element method applied to laminar vortex-shedding from arrays of cylinders in various arrangements", *Journal of Fluids and Structures*, Volume 14, Edição 3, Páginas: 375-402, Janeiro/2000.
- Infográfico Petrobras: Tipos de plataformas Petrobras 2014.
- Kang, S. "Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers", *Physics of Fluids*, Volume 9, Edição nº 9, Páginas 2486-2498, Setembro/2003.
- Laizet, S; Li, N. Incompact3d: "A powerful tool to tackle turbulence problems with up to O(105) computational cores", International Journal for Numerical Methods of Fluids; Volume 67, Edição 11, Páginas: 1735-1757, Dezembro/2011.
- Lam, K.; Gong, W.Q; So, R.M.C. "Numerical simulation of cross-flow around four cylinders in an in-line square configuration", *Journal of Fluids and Structures*, Volume 24, Edição 1, Páginas: 34-57, Janeiro/2008.
- Lam, K.; Lo S.C. "A visualization study of cross-flow around four cylinders in a square configuration", *Journal of Fluids and Structures*, Volume 6, Edição 1, Páginas: 109-131, Janeiro/1992.
- Lam, K.; Zou, L. "Experimental study and large eddy simulation for the turbulent flow around four cylinders in an inline square configuration", *International Journal of Heat and Fluid Flow*, Volume 30, Edição 2, Páginas: 276-285, Abril/2009.
- Liu, C.; Sung, C.H.; Zheng, X. "Preconditioned multigrid methods for unsteady incompressible flows", Journal of Computational Physics, Volume 139, Edição 1, Páginas: 35-57, Janeiro/1998.
- Lu, L.; Liu, MM.; Teng, B.; Cui, ZD.; Tang, GQ.; Zhao, M.; Cheng, L. "Numerical investigation of fluid flow past circular cylinder with multiple control rods at low Reynolds number", *Journal of Fluids and Structures*, Volume 48, Páginas: 235-259, Julho/2014.
- Meneghini, J.R; Saltara, F.; Siqueira, C.L.R; Ferrari JR, J.A. "Numerical simulation of flow interference between two circular cylinders in tandem and side-by- side arrangements", *Journal of Fluids and Structures*, Volume 15, Edição 2,Páginas: 327-350 Fevereiro/2001.
- Panton, Ronald L. "Incompressible Flow", 4º Edition, John Wiley & Sons, 2013.
- Qu, L.; Norberg, C.; Davidson, L.; Peng, SH.; Wang, F. "Quantitative nume-rical analysis of flow past a circular cylinder at Reynolds number between 50 and 200", *Journal of Fluids and Structures*, Volume 39, Páginas: 347-370, Maio/2013.
- Sarvghad-Moghaddam, H; Nooredin, N. "Numerical simulation of flow over two side-by-side circular cylinders", Journal of Hidrodynamics, Volume 23, Edição 6, Páginas-792-805, Dezembro/2011.
- Sharman, B.; Lien, F. S.; Davidson L.; Norberg C. "Numerical predictions of low Reynolds number flows over two tandem circular cylinders", *International Journal for Numerical Methods in Fluids*, Volume 47, Páginas 423-447, Dezembro/2004.
- Zhang, J.; Dalton. C. "A three-dimensional simulation of a steady approach flow past a circular cylinder at low Reynolds number", *International Journal for Numerical Methods in Fluids*, Volume 26, Edição 9, Páginas: 1003-1022, Maio/1998.