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Abstract. This paper presents the prediction of both yield and tensile strengths for high-alloy steels from chemical 
composition only, that is, the microstructure, grain size, temperature and other variables are unknown. For that purpose, 
a neural network was designed, where the input features were: i) raw data and; ii) Regression F-test filtered data. For 
both cases, a Bayesian optimizer was utilized for tuning. The results show that for the yield strength, preprocessing the 
data through an F-test gives the best results (R-squared equal to 0.84), meanwhile for the tensile strength, the raw data 
produces the best performance (R-squared equal to 0.85). Depending on the target and dataset size, removing features 
through an F-test can substantially increase the accuracy, however, in the scenario where important features are 
removed, the accuracy dwindles. It was also observed that a convenient way to choose the most efficient neural network 
is selecting the one with the lowest number of neurons, indicating low overfitting. 
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1. INTRODUCTION  
 

In the past few years artificial intelligence (AI) has been gaining popularity in different areas of science and becoming 
especially important for engineers and data scientists. Among all the tools in AI, neural network (NN) is undoubtedly one 
of the most popular, mainly due to its capacity of solving complex and massive problems by learning from experience 
(Hinton, 1992). Neural networks have the most diverse applications, such as tropical cyclone forecasting (Liu, et al., 
2005), stock prediction (Liu and Ma, 2012) and face recognition (Aitkenhead and Mcdonald, 2003). They permit the 
development of quantitative expressions without compromising the known complexity of the problem (Bhadeshia, 2009).  

In the field of materials science, there are difficult problems where the general concepts might be understood but 
which are not as yet amenable to scientific and mathematical treatment (Bhadeshia, 1999). Because of that, in the past 
few years neural networks have been widely used in materials science to help solve those tough tasks. As an example, 
Singh et al. (1998) predicted the yield to tensile strength ratio as a function of the carbon and manganese concentrations 
of hot-rolled steels, and those results are now used for the automation of rolling mills (Alaei, et al., 2016). Yield and 
tensile strengths are of paramount importance for structural integrity and reliability (Karmazínová and Melcher, 2012), 
and its accurate prediction involves a huge number of parameters, such as the chemical composition (Calik, et al., 2010; 
Wang, et al., 2017), grain size (Margolin and Hashimoto, 1981; Rice, 1993), temperature (Wang, et al., 2013), 
microstructure (Mizuno, et al., 2010) and others. Although an accurate prediction should involve many parameters, as 
mentioned before, there is a strong, practical need for an estimation of yield and tensile strengths utilizing only the 
chemical composition, without any additional investigation of the detailed process that should control other features. 

Demura et al. (2019) predicted the creep rupture time for steels using as inputs only the chemical composition and 
test conditions, obtaining a reasonable prediction, extremely useful as an estimate, since in the real world there may not 
be further information available apart from the chemical composition of the steel. Following Demura’s idea, in the present 
work the authors estimate both the yield and tensile strengths for high-alloy steels only from chemical composition 
applying statistical methods and a neural network. 
 
1.1. Feed-forward neural network model 
 

A feed-forward neural network is the simplest type of artificial neural network devised, where the information moves 
only forward, from the input nodes through the hidden nodes and finally to the output nodes. Fig. 1 represents a simple 
feed-forward neural network. 
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Figure 1. Feed-forward neural network (author, 2020) 
 

The input layer receives correspondent values to its input Xi (i=1,2,…,N), where N is the number of X features, also 
corresponding to the number of input nodes. The output of the hidden layer, f(z), is computed from the values of the 
previous layer weighted, as can be seen in Eq. (1), and transformed by a pre-specified activation function (AF), 
represented in Eq. (2) as follows: 

 
𝑧 = 𝑤 + ∑ 𝑥 𝑤                 (1) 
 
𝑓(𝑧) = 𝐴𝐹(𝑧)               (2) 

 
When the hyperparameters of a neural network are selected, the weights are then tuned through the back-propagation 

algorithm, that adjusts the ‘strength’ of the connections between nodes and reduces the error between the desired signal 
and output of the neural network. To the best of the authors’ knowledge, there is no specific method to determine the 
optimal hyperparameters for a neural network, and most optimization approaches rely on trial and error. Among the 
available optimization algorithms, the Bayesian optimizer carries out a probability search based on results from prior 
random runs and converges to the optimal hyperparameters, being widely used. Although the Bayesian algorithm does 
tweak the hyperparameters, the selected range of hyperparameters that will be analyzed must be specified beforehand, 
and the wider it is, the longer it will take for the algorithm to converge. 
 
1.2. Data reduction  
 

A drawback regarding a neural network is its heavily dependence on a large quantity of data. More data will always 
result in better and more reliable results (Dubost, et al., 2019; Xu and Liu, 2019). Unfortunately, gathering large datasets 
with manually labeled data is both work-intensive and expensive (Wagner, et al., 2013). When increasing the dataset is 
virtually inviable, data reduction is a good approach to compact the model (Ali, 2004; Fyefe, 1997). For few observations 
with many features data reduction proves to be extremely powerful, since when the neural element number n of neural 
networks is larger than the sample size m, the overfitting problem arises because there are more parameters than actual 
data (more variables than constraints) (Zhang, et al., 2015). The Compression of neural network input data makes it 
possible to design smaller neural networks than those without data compression (Kuzniar and Zajac, 2015), and currently 
the most popular method for data dimensionality reduction is based on Principal Component Analysis (PCA) (Tan and 
Mayrovouniotis, 1995). 

Principal Component Analysis (PCA) and variant methods are dimension reduction techniques that rely on orthogonal 
transformations in order to find a low-dimensional set of axes that compress the data based on the variance of each feature 
(Battaglino and Koyuncu, 2020; Hotelling, 1933). Generally speaking, PCA, instead of simply identifying the most 
important variable, combines variables into new constructs made up of different variables and then identifies the most 
important of the new constructs (Emerson, 2020). A drawback in PCA method is that it cannot be used in design problems, 
since features tend to be independent from each other. 

For small datasets where the features are not correlated, a feasible simplifying alternative is to eliminate features with 
low impact in the model, performing a bias-variance tradeoff. One way of analysing the relevance of parameters is through 
an F-test, which compares two regression models based on an analysis of variance (ANOVA). Consider the following 
unrestricted model, illustrated in Eq. (3) bellow: 
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𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 = 𝑦              (3) 
 

To test the significance of one or more parameters, the model is fitted without the parameters being analysed, as can be 
seen in the restricted model bellow, represented by Eq. (4): 

 
𝛽 + 𝛽 𝑥 + ⋯ + 𝛽 𝑥 = 𝑦              (4) 
 

When both models are compared, the null hypothesis that states that the feature has no influence in the model is then 
tested, according to Eq. (5):  

 
H0: ∑ 𝛽 = 0              (5) 
 

The number of features in the model is represented by n and k is the number of features considered after applying a 
restriction on it. In order to evaluate if the restricted model fails to explain the variance in the target value it is necessary 
to reject the null hypothesis (H0), and this can be made by utilizing the following test statistic, represented in Eq. (6) in 
both models: 
 

𝑇 =  
( )/( )

/( )
              (6) 

 
Where 𝑆𝑆𝑅  and 𝑆𝑆𝑅  represent the sum of squared residuals for the restricted and unrestricted models, respectively, 
and m denotes the sample size. The terms (n-k) and (m-n+1) are called “degrees of freedom”. The test statistic 𝑇 follows 
an F-distribution, therefore its p-value can be obtained from the F-distribution. If the p-value is below a predetermined 
threshold (usually 0.05, by Fisher’s standards) the null hypothesis can be rejected and the restricted model disregarded. 
An important observation is that the errors from the two models must be independent and normally distributed. If the 
assumption of error independence is violated the model is invalid, however even if the errors are nonnormally distributed 
the F-test remains robust for a dataset that is not too small (Ali and Sharma, 1996). 

 
2. MATERIALS AND METHODS 

 
A dataset containing 312 high-alloy chemical compositions, in percentage (%), and yield and tensile strengths, in 

MPa, was obtained from (Ward, et al., 2018). The dataset was created by Gareth Conduit of Cambridge University and 
Intellegens. The features that will be utilized as inputs are the chemical elements carbon (C), Manganese (Mn), Silicon 
(Si), Chromium (Cr), Nickel (Ni), Molybdenum (Mo), Vanadium (V), Nitrogen (N), Niobium (Nb), Cobalt (Co), 
Tungsten (W), Aluminium (Al) and Titanium (Ti). The target values of the models will be the yield strength (YS) and 
tensile strength (TS). The most relevant information regarding the dataset are summarized below, in Tab. 1. 

 
Table 1. Characteristics of the dataset. The input features are carbon (C), Manganese (Mn), Silicon (Si), Chromium 

(Cr), Nickel (Ni), Molybdenum (Mo), Vanadium (V), Nitrogen (N), niobium (Nb), Cobalt (Co), Tungsten (W), 
Aluminium (Al) and Titanium (Ti). The target values are Yield Strength (YS) and Tensile Strength (TS) (Author, 2020) 

 
Units: 312 

 C Mn Si Cr Ni Mo V N 

Mean 0.096 0.146 0.221 8.044 8.184 2.766 0.184 0.006 

Std 0.109 0.397 0.581 5.426 6.337 1.833 0.452 0.018 

Min 0.000 0.01 0.010 0.010 0.010 0.020 0.000 0.000 

Max 0.430 3.000 4.750 17.500 21.000 9.670 4.320 0.150 

 Nb Co W Al Ti YS TS  

Mean 0.035 7.009 0.161 0.239 0.311 1420.998 1641.653  

Std 0.162 6.254 0.920 0.340 0.557 301.894 346.475  

Min 0.000 0.010 0.000 0.010 0.000 1005.900 1019.000  

Max 2.500 20.100 9.180 1.800 2.500 2510.300 2570.000  
 

The dataset was randomly shuffled and 15% of it was removed - also randomly - in order to split a train set and test 
set. Both the train and test sets were then normalized based on the parameters of the train set. Two different situations 
were analysed: 1) the neural network was fed with the raw inputs, 2) The train set was fitted in a linear regression model 
and an F-test was performed under the null hypothesis that a specific feature is redundant for the model, for each feature 
individually, and a neural network was fed only with the relevant features. 
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2.1. F-test in the dataset 
 

Table 2 summarizes the p-values under the null hypothesis where the specific coefficient has no significative 
influence over a simple linear model, which can be used to rule out some inputs from the neural network and reduce its 
complexity. The reference is the distribution of F1,251 for a 5% asymptotic level by the test Ψ5%. As can be seen, the level 
of 5% is respected for the mutual acceptance of all the null hypothesis according to the sharper Bonferroni correction for 
multiple tests of significance (Hochberg, 1988). 

 
Table 2. Hypothesis testing of no dependence of each input feature on the train set in a simple linear regression for F1,251 

and 5% asymptotic level (Author, 2020) 
 

Restriction 
p-value 

(Yield Strength) 
H0: βn = 0 

p-value 
(Tensile Strength) 

H0: βn=0 

C e-11 Reject e-20 Reject 
Mn 0.981 Fail to Reject 0.533 Fail to Reject 
Si 0644 Fail to Reject 0.009 Reject 
Cr 0.336 Fail to Reject 0.013 Reject 
Ni 0.022 Reject 0.027 Reject 
Mo 0.789 Fail to Reject 0.106 Fail to Reject 
V 0.082 Fail to Reject 0.105 Fail to Reject 
N 0.268 Fail to Reject e-06 Reject 

Nb 0.379 Fail to Reject 0.768 Fail to Reject 
Co e-07 Reject e-19 Reject 
W 0.854 Fail to Reject 0.340 Fail to Reject 
Al e-07 Reject e-06 Reject 
Ti e-20 Reject e-27 Reject 

 
Based on the previous analysis, the neural network contains different inputs for the yield strength and tensile strength 

after performing the regression F-test. For the yield strength, the considered features are C, Ni, Co, Al and Ti, and for the 
Tensile Strength they will be C, Si, Ni, N, Co, Al, Ti. For further confirmation, an F8,251-test and an F5,251-test were both 
performed considering the removal of features which could not be rejected in the F1,251 test for each case. The results are 
summarized in Tab. 3, where it can be seen that removing these features indeed does not violate the 5% asymptotic level, 
as previously mentioned above. 

 
Table 3. Hypothesis testing of no dependence of the removed features on the train set in a simple linear regression for a 
5% asymptotic level. For yield strength features an F8,251-test was performed, meanwhile for the tensile strength case an 

F5,251-test was performed (Author, 2020) 
 

Target value Input features Removed features p-value H0: Σβn = 0 

Yield Strength C, Ni, Co,Al, Ti 
Mn, Si, Cr, Mo, V, N, 

Nb, W 
0.585 Fail to Reject 

Tensile Strength 
C, Si, Cr, Ni, N, Co, 

Al, Ti 
Mn, Mo, V, Nb, W 0.333 Fail to Reject 

 
2.2. Algorithm  
 

As previously mentioned, two different input situations are analysed. These conditions are: i) the raw data; ii) data 
features that were not ruled out in the 5% asymptotic level of the regression F-test. The data was randomly shuffled and 
split into train and test sets to avoid selection bias. To find the hyperparameters, a Bayesian optimizer was applied. The 
top 3 results provided by the optimizer were then statistically tested to select the best possible given combination of 
hyperparameters of the neural network. A summary of the algorithm is described in Tab. 4. 

For small dataset sizes, the weight tuning process needs to see the trainset multiple times, which leads to a large 
number of epochs, that is, the number of times that the model sees the same data. For few data, it is a good approach to 
set an early stopping training which can be determined empirically. Pons et al. (2019) set its value to 200, meanwhile for 
the dataset presented in this work the value of 100 seemed to work better. 
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Table 4. Structure of the algorithm utilized in the present work (Author, 2020) 
 

Algorithm 
Input: Chemical composition of high-alloy steels  

  i) Raw data features 
  ii) data features not ruled out in the F-tests 

Output: Yield Strength (YS) / Tensile Strength (TS) 
1: shuffle and randomly remove 15% of the dataset to make a trainset and test set 
2: normalize both the trainset and test set based on the train set  
3: Find hyperparameters with Bayesian optimizer (50 runs) 

 layers: up to 3 
 neurons per hidden layer: 32 to 512, step=32 
 activation functions: RELU, ELU, SELU 
 epochs: 50 to 1000, step=100 
 early stop: patience=100 
 validation test = 15% 
 loss = MSE 

4: top 3 best models are tested and the best one picked up 
5: end  

 
3. RESULTS AND DISCUSSION 

 
Table 5. Optimal hyperparameters found with Bayesian optimizer for all cases (Author, 2020) 

 
 Yield Strength Tensile Strength 

Layer Hyperparameter F-Test Raw Data F-Test Raw Data 
1st hidden 

layer 
Neurons 128 448 256 64 

Activation RELU RELU RELU RELU 
2nd hidden 

layer 
Neurons 64 160 448 480 

Activation SELU RELU ELU RELU 
3rd hidden 

layer 
Neurons 96 192 192 194 

Activation RELU SELU SELU RELU 
 ΣNeurons 288 800 896 738 

 
 
The optimal neural network hyperparameters for each case are described above in Tab. 5. Depending on how the input 

is manipulated, it is notable the divergence in the optimal hyperparameters found with the Bayesian optimizer, indicating 
that every time the input features are shaped, a new hyperparameter search must be carried out to assure the optimal 
performance. Regarding the total number of neurons, Arifin et al. (2019) state that if this value is too large, the neural 
network performs poorly, although Fumumoto et al. (2017) obtained best performances for problems with greater 
complexity by increasing the number of neurons. It is reasonable to conclude that, since the current problem involves 
essentially the same task (prediction of yield and tensile strengths), the settings with the lower number of neurons tend to 
avoid overfitting better. For the yield strength case, shrinking the input features through an F-test displays the lower 
number of neurons, meanwhile, for the tensile strength case, feeding the neural network with raw inputs results in the 
smallest number of neurons, which points out the mentioned cases as the ones that will most likely perform better in the 
test set.  

Figure 2 presents subtle results regarding the stability of each condition. The empirical Cumulative Distribution 
Function (CDF) describes the likelihood of occurrence of an error being less to or equal to a chosen value. For the yield 
strength errors, the neural network fed with features shrank by an F-test presents high stability, with its median placed 
practically on the zero position. On the other hand, the raw input has a strong trend to under evaluate the prediction, which 
could be useful for safety purposes. For the tensile strength errors, both distributions behave with great similarity for the 
specified range. 
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Figure 2: On the top, the empirical Cumulative Distribution Function (CDF) of the errors; on the bottom, the histogram 
and density plots for the errors, where the dashed lines correspond to the medians for each case (Author, 2020) 

 

 
 

Figure 3: On the top, the empirical Cumulative Distribution Function (CDF) of the absolute value of the errors; on the 
bottom, the histogram and density plots for the absolute value of the errors, where the dashed lines correspond to the 

medians for each case (Author, 2020) 
 
The absolute value of the error for both the yield and tensile strengths are presented in Fig. 3. As can be seen for the 

yield strength model, the F-test case tends to present a slightly lower absolute value of error likelihood, bolstering the 
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previous belief it was going to perform better based on the smaller quantity of neurons. For the tensile strength target, the 
absolute value of error likelihood for both cases behave with great similarity, therefore a good alternative to analyse which 
model performs better in practice is by heavily penalizing outliers. The R-squared, described in Fig. 4, heavily penalizes 
outliers and can be used together with the previous charts to describe the consistency of the models. The yield strength 
predicted after the F-test filtering presents a higher R-squared value, equal to 0.84, which was already expected from the 
median and density plot analysis previously mentioned. Regarding the tensile strength prediction, the raw input data 
model outstands the one filtered with an F-test, presenting an R-squared value equal to 0.85. 

 

 
 

Figure 4: Predicted values plotted against the True Values for all the analysed cases for the yield strength, on the top, 
and tensile strength, on the bottom, where the blue line splitting the charts represents the perfect predicted condition. On 

the top of each chart is displayed the R-squared values (Author, 2020) 
 

4. CONCLUSIONS 
 
From the previous analysis, some conclusions can be made: 
• Depending on the target and how the features are fed to the Neural network, the optimal hyperparameters can largely 

diverge; 
• For yield strength prediction with few data points, performing an F-test filtering on the input features before feeding 

them to the Neural network presented the best performance, with an R-squared equal to 0.84; 
• If it is desirable to have slightly under evaluated predictions at the expense of some bias for safety purposes during 

yield strength prediction, the raw data may be used; 
• For the tensile strength prediction, the model that received the raw data performed better for having less outliers, 

with an R-squared of 0.85 
• When the target object is maintained the same and transformations are performed in the dataset features, a rough test 

to check which case will present better results is counting the total number of neurons and picking up the one with the 
lowest value. 
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