

XXVI Congresso Nacional de Estudantes de Engenharia Mecânica, CREEM 2019 19 a 23 de agosto de 2019, Ilhéus, BA, Brasil

ANÁLISE DO COMPORTAMENTO MECÂNICO DA TORRE DE TURBINA EÓLICA DE 5 MW POR MEIO DE SOFTWARE *OPEN SOURCE* BASEADO NO MÉTODO DE ELEMENTOS FINITOS

Sabrina Gabriel Castro, castrosabrinag@gmail.com¹ Augusto Salomão Bornschlegell, augustosalomao@ufgd.edu.br¹ Sanderson Manoel da Conceição, sandersonconceicao@ufgd.edu.br¹

¹Universidade Federal da Grande Dourados, Rodovia Dourados/ Itahum, km 12 – Unidade II

Resumo. A necessidade de se expandir a matriz energética renovável, a ausência de espaço e o crescente aumento da população, tornaram-se motivos principais para a instalação de parques eólicos offshore (turbinas eólicas instaladas em alto mar). O objetivo do estudo foi analisar as tensões máximas, através do critério de von Mises, utilizando o software de simulação Salome-Meca em uma análise de elementos finitos de uma torre de turbina eólica offshore, sujeita a carregamentos estáticos de cargas aerodinâmicas e hidrodinâmicas. Como resultado, foram obtidas a tensão máxima e o deslocamento de 105,4 MPa e 0,38 m, respectivamente. E para o carregamento mínimo a tensão máxima e o deslocamento foram de 35,23 MPa e 0,013 m.

Palavras chave: Torre eólica. FEA. Offshore. Análise estrutural.

1. INTRODUÇÃO

A busca por métodos de obtenção de energia renovável, ou seja, que provém de recursos naturais, já não é novidade nos dias de hoje. Muitos métodos já consolidados vêm ganhando cada vez mais espaço na matriz energética mundial devido à grande colaboração da tecnologia. A crise do petróleo, o esgotamento de combustíveis fósseis e o aumento das emissões de dióxido de carbono (CO_2), um dos grandes causadores do aumento da temperatura do planeta, são um dos fatores que impulsionaram o estudo e investimento na geração de energia limpa (Pinto, 2012).

A energia eólica faz parte do grande grupo das energias renováveis, tendo como recurso eólico o vento, que ocorre devido ao aquecimento não homogêneo da atmosfera provocando a circulação das massas de ar o que ocasiona a formação dos ventos. Segundo Pinto (2012), a energia gerada através do vento surgiu na construção dos moinhos de vento sendo utilizada primeiramente para o bombeamento da água e a moagem de grãos por volta de 1219. Só em julho de 1887, o moinho de vento foi utilizado pela primeira vez para a geração de eletricidade. De acordo com a *Global Wind Energy Council (GWEC)*, a previsão é que até 2030, a energia produzida a partir do vento forneça 20% da eletricidade de todo o mundo. O Brasil recentemente subiu para a oitava posição no ranking mundial da GWEC, conforme e de acordo com os dados divulgados pela Associação Brasileira de Energia Eólica (ABEEólica), até o fim de 2019 a energia gerada a partir da força do vento será a segunda principal fonte de energia, atrás apenas das hidroelétricas.

Com os avanços tecnológicos e estudos realizados na área, os parques eólicos passaram a funcionar no mar. Devido as altas velocidades do vento nesses locais, a baixa rugosidade da superfície e a ausência de construções ao redor, chegouse à conclusão que a construção de turbinas em alto mar (*offshore*) aumentaria a eficiência na produção de eletricidade, sendo uma das maiores desvantagens, em relação a eólica *onshore*, os custos para implantação dessa tecnologia.

De acordo com Pinto (2012), os dinamarqueses foram os pioneiros na produção de energia gerada sob as águas, instalando as primeiras turbinas eólicas *offshore* em 1991. Tecnologia essa que ainda não foi implantada no Brasil, porém, segundo nota lançada pela Petrobras em agosto de 2018, a mesma já está desenvolvendo um projeto para a instalação do primeiro parque eólico offshore brasileiro, sendo as regiões litorâneas do nordeste, do Rio de Janeiro e do sul do Brasil, os lugares que apresentaram os maiores potencias eólicos *offshore*.

Os parques eólicos *offshore* estão crescendo de forma exponencial. Segundo Noctula (2017) a Europa tem cerca de 4149 turbinas eólicas em operação. Para aumentar a utilização dessa fonte de energia e torná-la acessível aos litorais do mundo, diversos estudos estão sendo realizados com o objetivo de diminuir os custos de instalação, fabricação e distribuição dessa energia gerada, além de aumentar sua eficiência. Atualmente, há seis tipos de fundação *offshore* em uso: mononopilar (ou monoestacas), tripé, gravitacional, *jacket* e flutuante (ancoradas). A forma mais comum e mais utilizada é a monopilar (Pinto, 2012).

O presente trabalho tem como objetivo analisar os comportamentos mecânicos em decorrência de esforços aerodinâmicos e hidrodinâmicos presentes na torre de uma turbina eólica offshore do tipo monopilar, utilizando o software

Análise do Comportamento Mecânico da Torre de Turbina Eólica de 5 MW por meio de Software Open Source Baseado no Método de Elementos Finitos

de simulação Salome-Meca, plataforma genérica para simulação numérica. Além de gratuito, esse software permite uma ampla gama de aplicabilidade, sendo possível o desenvolvimento de desenhos e projetos, CAD (*Computer Aided Design*) e CAE (*Computer Aided Engineering*) utilizando a plataforma integrada Code_Aster. A utilização desse método, permitiu obter os campos de tensões da estrutura bem como o deslocamento provocado pelos carregamentos submetidos.

2. METODOLOGIA

2.1. Modelagem pelo Método dos Elementos Finitos

A modelagem FEA (*Finite Element Analysis*) consiste na discretização de sistemas contínuos, ou seja, ao invés de calcular o deslocamento dos infinitos pontos de uma estrutura, gerando equações diferenciais, como acontece nos sistemas contínuos, os deslocamentos são calculados somente em alguns pontos, sendo esses pontos chamados de nós. A escolha da localização e do número de nós é um dos critérios de grande importância na resolução desse método, visto que o número de pontos discretos escolhidos deve ser suficiente para representar o deslocamento do conjunto inteiro de forma aproximada (Filho, 2000).

Para a construção da torre eólica *offshore*, foi utilizado como referência uma turbina modelo de 5 MW. Esse modelo de turbina foi desenvolvido pelo Laboratório Nacional de Energia Renovável (*NREL*, sigla em inglês), sendo amplamente utilizado como referência para facilitar pesquisas e estudos conceituais, dado que, os fabricantes de turbinas eólicas não informam todos os detalhes acerca dos seus produtos, dificultando a análise caso fosse necessário recorrer a algum catálogo. Para um melhor entendimento do método utilizado, segue abaixo, de forma detalha, as etapas do processo de modelagem utilizando a plataforma de simulação *open source* Salome-Meca.

2.1.1. Primeira Etapa: Criação da geometria

Para a realização desse estudo, foram efetuadas algumas considerações acerca da construção da torre (geometria) e condições de carregamento. São elas: o rotor encontra-se parado; o centro de massa do conjunto rotor-nacele (RNA) coincide com o centro de massa da estrutura; os carregamentos aplicados foram aproximados para carregamentos estáticos. Definida essas condições, a torre cônica foi desenhada utilizando a plataforma *CAD* do software *Salome-Meca*, no módulo *geometry* com os dados de construção presentes na Tabela 1. A geometria foi criada no formato casca, ou seja, de paredes muito finas, na qual foi definida posteriormente sua espessura.

Parâmetros	Unidade	Valor
Diâmetro do topo	m	3,7
Espessura do topo	m	0,019
Diâmetro da base	m	6
Espessura da base	m	0,027
Altura da torre acima do nível do mar (NM)	m	87,6
Altura total da torre	m	107,6
Altura da seção submersa	m	20
N° de pás	-	3
Massa do rotor	kg	110.000
Massa da nacele	kg	240.000

Tabela 1. Dados geométricos da turbina eólica de 5 MW (adaptado de NREL)

A Figura 1a exibe a geometria obtida com suas respectivas cotas. O modelo empregado, da NREL, não apresentou em seu documento a variação da espessura com a altura da torre, apenas consta que a espessura foi assumida como sendo linearmente afunilada, apresentando apenas as espessuras da base e do topo. Desse modo, a torre foi dividida conforme apresenta a Fig. 1b e o valor das espessuras de cada seguimento estão listados na Tab. 2.

Seção	Espessura (m)
e1	0,027
e2	0,026
e3	0,025
e4	0,024
e5	0,023
e6	0,022
e7	0,021
e8	0,020
e9	0,019

Tabela 2. Espessura ao longo da estrutura (Autoria própria)

a) Representação das dimensões

2.1.2. Segunda Etapa: Criação da malha

Para a aplicação do método dos elementos finitos é necessário desenvolver a malha que melhor representa cada caso específico; com isso, é possível obter uma boa aproximação da solução, minimizando os erros. Os elementos são conectados entre si através dos nós e ao conjunto de elementos e nós, dá-se o nome de malha (Filho, 2000). Para o estudo em questão, a malha foi discretizada no módulo *mesh* utilizando os elementos de formato quadrangular de elemento de casca, conforme é mostrado na Fig. 2, onde o número de elementos foi de 9680 com interpolação linear.

Figura 2. Malha quadrangular ao longo de parte do tubo cônico (Autoria própria)

2.1.3. Terceira Etapa: Definição das condições de contorno e carregamento

No módulo *Aster* foram definidas todas as condições de carregamento na qual a estrutura fora submetida. É nessa etapa também que são definidos os tipos de campos de tensões desejados para a visualização na etapa 4. De acordo com a norma DNV-ST-0437, os carregamentos integrantes no projeto de uma torre eólica *offshore* podem ser separados de acordo com os parâmetros da Tab. 3 a seguir.

Análise do Comportamento Mecânico da Torre de Turbina Eólica de 5 MW por meio de Software Open Source Baseado no Método de Elementos Finitos

Definição	Ações
Permanente	Peso da estrutura + RNA
Ambiental	Água, Vento, Gelo, Sismo
Variável	Sobrecarga
Deformação	Temperatura e apoios

Tabela 3. Ações sujeitas pela estrutura da torre eólica (adaptado de DNV-ST-0437)

Todavia, serão considerados apenas os esforços permanentes, ou seja, peso da estrutura e do conjunto rotor-nacele, pressão hidrostática, pressão do vento e a pressão provocada pela corrente marítima. Todos os carregamentos citados anteriormente foram considerados constantes ao longo de toda a estrutura. A Figura 3 apresenta os esforços atuantes na torre *offshore*. Em 1 temos a pressão exercida pela força do vento, 2 a pressão hidrostática atuante na seção abaixo do nível do mar, 3 o peso do conjunto RNA e 4 a pressão exercida pela corrente marítima. Como condição de contorno, a estrutura encontra-se engastada em sua base, e no software, foi atribuído o valor zero para os graus de liberdade.

Figura 3. Carregamentos estáticos atuantes na estrutura (Autoria própria)

O material utilizado, também definido nessa etapa, foi o aço. Esse material apresenta propriedades importantes para resistir aos esforços e condições climáticas a que está exposto, devido a sua maior elasticidade, resistência à corrosão, ao desgaste e a oxidação. As propriedades do aço utilizado na modelagem são apresentadas na Tab. 4.

Tabela 4. Propriedades do aço utilizado na modelagem (NREL e DNV-ST-0437)

Parâmetro	Unidade	Valor
Módulo de Young	GPa	210
Densidade	Kg/m^3	8500 *
Coeficiente de Poisson	-	0,3
Tensão de escoamento	MPa	355

* A densidade de 8500 kg/m^3 foi planejada para ser um aumento acima do valor típico do aço, que é de 7850 kg/m^3 para compensar tintas, parafusos, soldas e flanges que não são contabilizadas nos dados da espessura da torre, conforme apresenta a NREL. Segundo a DNV-ST-0437, a estrutura de uma turbina eólica *offshore* deve suportar os esforços gerados pelas seguintes velocidades de vento (Tab. 5).

Tabela 5. Velocidades do vento que a estrutura deve suportar (adaptado de DNV-ST-0437)

Dados	Unidade	Valor
Velocidade do vento de referência	m/s	50
Velocidade média anual do vento	m/s	10
Velocidade extrema do vento de 50 anos de rajada de 3s	m/s	60
Velocidade nominal NREL 5 MW	m/s	11,4

Sendo assim, a estrutura deve suportar, sem causar dano estrutural, a incidência dos carregamentos em suas superfícies para todas as condições listas na Tab. 5. Para determinar a intensidade dos esforços aplicados na estrutura, foram utilizadas as seguintes normas: DNV-RP-C205, DNV-ST-0437 e DNV/Risø. A formulação utilizada para as cargas apresentadas na Fig. 3, são exibidas a seguir, conforme as exigências das normas citadas anteriormente.

Cargas aerodinâmicas

A força de arrasto é expressa pela Eq. (1) a seguir, conforme indicado pela DNV/Risø.

$$F_D = \frac{1}{2} \cdot \rho_{ar} A_{far} \cdot V_{ar}^2 \cdot C_D \tag{1}$$

Onde: ρ_{ar} é a densidade do ar, A_{far} é a área frontal em contato com o ar, V_{ar} é a velocidade do ar e C_D é o coeficiente de arrasto. O coeficiente de arrasto e a densidade do ar à 25 °C são apresentadas no Apêndice F da DNVGL-RP-C205 e são 1 e 1,184 (kg/m^3), respectivamente. A pressão exercida pela movimentação do ar sobre a superfície da estrutura foi obtida de acordo com a Eq. (2) abaixo.

$$P = \frac{F_D}{A_{far}} \tag{2}$$

Pressão hidrostática

A imersão da estrutura em água induz à uma pressão hidrostática em sua superfície. Isso representa uma carga normal permanente, que aumenta linearmente com a profundidade da água. Todavia, no presente trabalho, essa pressão foi considera constante ao longo de todo o comprimento submerso, onde a expressão utilizada é apresentada na Eq. (3).

$$P_h = \rho_{ag}. g.h \tag{3}$$

Onde: ρ_{ag} é a densidade da água salinizada *, g é a constante gravitacional e h a profundidade da água. *A densidade da água salinizada à 20 °C é de 1024,7 (kg/m^3) e foi obtida no apêndice F da DNVGL-RP-C205.

Peso RNA

O peso do conjunto rotor-nacele, presente no topo da torre, foi definido conforme apresenta a Eq. (4). Entretanto, para que fosse possível transmitir para o software, esse peso foi modificado para uma carga distribuída, utilizando o perímetro do topo. A expressão para o cálculo da carga distribuída encontra-se na Eq. (5).

$$F_{RNA} = (m_{rotor} + m_{nacele}).g \tag{4}$$

$$W = \frac{F_{RNA}}{P}$$
(5)

Onde m_{rotor} e m_{nacele} são apresentados na Tab. 1. *P* é o perímetro da circunferência do topo e é igual à π . *D*, sendo *D* o diâmetro do topo, dado pela Tab. 1.

Correntes marítimas

Correntes marítimas constituem às massas de água que se deslocam em diversos lugares ao longo dos mares. A locomoção de massas de água não permite que a mesma interaja com massas de águas dos lugares que percorreu, obtendo características particulares como a salinidade e a temperatura. Essas massas de água colidem contra a estrutura da turbina, caracterizando as cargas de corrente marítima. A pressão e força exercida na estrutura são apresentadas nas Eq. (6) e (7) seguintes, conforme descreve a DNV-ST-0437.

$$P_c = \frac{1}{2} \rho_{\acute{a}gua} V_c^2 \tag{6}$$

$$F_c = C_D P_c \tag{7}$$

Em que $\rho_{água}$ é a densidade da água salinizada à T = 20 °C, C_D é o coeficiente de arrasto e V_c é a velocidade de corrente. A densidade da água é 1024,7 (kg/m^3) (DNVGL-RP-C205 - Apêndice F), a velocidade de corrente é de 0,8 (m/s) e C_D é o coeficiente de arrasto que é de 0,7 segundo Kühn (2001).

2.1.4. Quarta Etapa: Visualização dos campos de tensões e deslocamento

Na última etapa do procedimento, realizada no módulo *ParaView*, é possível visualizar inúmeros casos que podem ocorrer na torre. No estudo em questão, ainda na terceira etapa, foi escolhido obter a tensão máxima de von Mises e o deslocamento sofrido pela estrutura devido à aplicação das cargas.

S. G. Castro, A.S. Bornschlegell e S. M. Conceição

Análise do Comportamento Mecânico da Torre de Turbina Eólica de 5 MW por meio de Software Open Source Baseado no Método de Elementos Finitos

2.2. Carregamentos aplicados

Os carregamentos aplicados na estrutura, que foram obtidos pelas equações citadas na terceira etapa, para diferentes velocidades do vento, são apresentados na Tab. 6.

Valasidada		Carregamentos			
(m/s)	1. Cargas	2. Pressão	3. Peso R	NA e W*	4. Correntes
(11/8)	aerodinâmicas (Pa)	hidrostática* (Pa)	Ν	N/m	Marítimas* (Pa)
60	2131	2,01. 10 ⁵	3,43. 10 ⁶	2,82. 10 ⁶	328
50	1480	2,01. 10 ⁵	3,43. 10 ⁶	2,82. 10 ⁶	328
40	947	2,01. 10 ⁵	3,43. 10 ⁶	2,82. 10 ⁶	328
30	533	2,01. 10 ⁵	3,43. 10 ⁶	2,82. 10 ⁶	328
20	237	2,01. 10 ⁵	3,43. 10 ⁶	2,82. 10 ⁶	328
10	56	2,01. 10 ⁵	3,43. 10 ⁶	2,82. 10 ⁶	328

Tabela 6. Cargas aplicadas na torre eólica offshore de acordo com as condições do vento (Autoria própria)

* Para esse estudo, independem da velocidade do vento.

3. RESULTADOS E DISCUSSÕES

Para analisar a influência gerada pelo aumento da velocidade do vento, foram simuladas diferentes situações de carga, apenas variando a velocidade, conforme apresenta a Tab. 7 e seus respectivos valores de tensões. A quarta coluna apresenta o coeficiente de segurança (CS) definido pela Eq. (8) abaixo.

(8)

$$CS = \frac{\sigma_{esc}}{\sigma_{max,VM}}$$

Em que: $\sigma_{max,VM}$ é a tensão máxima de von Mises e σ_{esc} é a tensão de escoamento

Tabela 7. Tensoes maximas e desideamentos obtidos devido a vanação da velocidade do vento (Autoria propria	Tabela [^]	7. Tensões	; máximas e	e deslocamentos	obtidos	devido a	variação	da velocidade do	vento	(Autoria	própria)
--	---------------------	------------	-------------	-----------------	---------	----------	----------	------------------	-------	----------	----------

Velocidade do vento (m/s)	Tensão máxima de von Mises (MPa)	Deslocamento (m)	Coeficiente de Segurança (CS)
60	105,4	0,3823	3,37
50	82,59	0,2656	4,30
40	64,21	0,1701	5,53
30	50,29	0,0960	7,06
20	40,71	0,0432	8,72
10	35,23	0,0130	10,08

O campo de tensões gerado pode ser visualizado pela Fig. 4. Em seguida, na Fig. 5, o deslocamento resultante provocado por esses esforços. Para uma melhor visualização do deslocamento, a escala de deslocamento foi aumentada em 35 vezes.

De acordo com os campos de tensões obtidos, à medida que a velocidade do vento vai aumentando, as tensões foram aumentando no sentido axial da torre, devido ao aumento de carregamento aerodinâmico. Apesar desse aumento, a tensão máxima continuou na base de fixação. Comportamento esse que já era previsto devido a condição de contorno de engaste. Para as menores velocidades simuladas, como a velocidade de 10 m/s e 20 m/s (Fig. 4a e 4b), fica evidente que a carga máxima fica concentrada na seção submersa da superfície, dado que o carregamento hidrostático contribui para esse fenômeno. Para a velocidade de 30 m/s (Fig. 4c), a tensão começa a aumentar no sentido no axial, onde o carregamento aerodinâmico começa a ficar evidente. Já para as outras velocidades de 30, 40, 50 e 60 m/s a tensão aumenta ainda mais ao longo da torre, em que o carregamento aerodinâmico já está no seu estado máximo.

Conforme pode ser observado nos resultados, a estrutura suporta as solicitações mecânicas impostas. Isso pode ser confirmado visto que, a tensão de von Mises máxima obtida é muito menor que a tensão de escoamento do material, dado na Tab. 4. Através do campo de deslocamento, foi observado que a estrutura deflete de modo proporcional ao aumento gradual da velocidade do vento, comportamento esperado dado que o material está dentro de sua zona elástica.

O deslocamento máximo foi, de acordo com o campo mostrado na Fig. 5f, de aproximadamente 0,4 m e de 0,013 m o deslocamento mínimo (Fig. 5a).

Figura 4. Campo de tensões gerados na estrutura pela variação da velocidade do vento (Autoria Própria)

Figura 5. Deslocamento gerado na estrutura devido a variação da velocidade do vento (Autoria própria)

S. G. Castro, A.S. Bornschlegell e S. M. Conceição

Análise do Comportamento Mecânico da Torre de Turbina Eólica de 5 MW por meio de Software Open Source Baseado no Método de Elementos Finitos

4. CONCLUSÃO

Através do campo de tensões obtido pelas simulações, conclui-se que o modelo estudado suporta os carregamentos estáticos aerodinâmicos e hidrodinâmicos a qual fora submetido. Para a condição climática mais extrema em alto mar, que é o caso da velocidade do vento à 60 m/s, a tensão máxima de von Mises na torre de turbina eólica offshore foi de 105,4 MPa. Esse resultado prova que a estrutura não apresentará dano estrutural, visto que o coeficiente de segurança foi de 3,37.

5. REFERÊNCIAS

ABEEólica, 2018. "Energia eólica ultrapassa marca de 14 GW de capacidade instalada". 15 Jul. 2019 http://abeeolica.org.br/noticias/energia-eolica-ultrapassa-marca-de-14-gw-de-capacidade-instalada/>.

DNVGL-RP-C205, 2017. "Environmental conditions and environmental loads"

https://rules.dnvgl.com/docs/pdf/DNVGL/RP/2017-08/DNVGL-RP-C205.pdf>.

DNV/Risø, 2002. Guidelines for Design of Wind Turbines, 2ª edição.

DNV-ST-0437, 2016. "Loads and site conditions for wind turbines". 15 Jul. 2019

https://rules.dnvgl.com/docs/pdf/DNVGL/ST/2016-11/DNVGL-ST-0437.pdf>.

Filho, A. A., 2000. Elementos Finitos. A base da Tecnologia CAE, 6ª edição.

GWEC, 2016. "Global Wind Energy Outlook 2016: Wind Power to dominate power sector growth". 15 Jul. 2019 https://gwec.net/publications/global-wind-energy-outlook/global-wind-energy-outlook-2016/>.

J. Jonkman, W. Musial e G. Scott., 2009 "NREL: Definition of a 5-MW Reference Wind Turbine for Offshore System Development".

Kühn. M., 2001. *Dynamics and design optimisation of offshore wind energy conversion systems*. Tese de doutorado, Delft University, Zuid-Holland.

Noctula, 2017. "Energia eólica offshore na Europa cresceu 25% em 2017". 15 Jul. 2019

<a>https://noctula.pt/energia-eolica-offshore-na-europa-cresceu-25-em-2017/>.

Pinto, M. O., 2013. Fundamentos de Energia Eólica, Rio de Janeiro, 1ª edição.

6. RESPONSABILIDADE PELAS INFORMAÇÕES

Os autores são os únicos responsáveis pelas informações incluídas neste trabalho.