

XXVI Congresso Nacional de Estudantes de Engenharia Mecânica, CREEM 2019 19 a 23 de agosto de 2019, Ilhéus, BA, Brasil

DIMENSIONAMENTO E ANÁLISE DE RESISTÊNCIA A FLEXÃO DE LONGARINA TUBULAR PARA A ASA DE UMA AERONAVE RADIO CONTROLADA

Yago Pablo Rodrigues Bueno, yagopablo6@gmail.com¹ Francisco Sávio do Livramento Vale, saviolivramento@gmail.com¹ Deney Gonçalves Carvalho Junior, deney.junior@outlook.com¹ Francisco Wanderson Pereira da Silva, franciscoderson@gmail.com¹ Hélder Pontes Gomes, helderpontes@ifpi.edu.br¹

¹Instituto Federal do Piauí, R. Álvaro Mendes, 94 - Centro (Sul), Teresina - PI, 64000-040

Resumo. Este trabalho visa dimensionar e analisar uma longarina para a asa de uma aeronave radio controlada. Para isso foi criado um código em Matlab para obter a dimensão inicial da viga, considerando as cargas calculadas pelo método de Stender e considerando que a mesma sofre somente flexão. Com os resultados da rotina criada, simulou-se a estrutura no software Ansys workbench em duas situações: uma com seção constante e outra com seção variando na direção axial, para a validação e análise da mesma. Foi considerando o diâmetro interno constante de 18,7 mm e o material utilizado foi um compósito de fibra de carbono e resina epóxi, chegando numa distribuição do raio de valor mínimo 19mm e máximo 23 mm . Na simulação, obteve-se uma tensão normal máxima de 13,49 Mpa e deflexão de 0,98 mm para a seção constante e 18 Mpa e deflexão de 1,88 mm para a seção variável.

Palavras chave: Aeronave. Longarina. Mecânica dos Sólidos. Elementos Finitos. Flexão

1. INTRODUÇÃO

Segundo (Fresieant e Oliviero, 2012), nos anos recentes houve um aumento de aproximadamente 4-5% por ano na demanda pelo transporte aéreo, com uma projeção de aumento para o futuro. Este aumento impacta diretamente na emissão de poluentes como o dióxido de carbono gerando um grande desafio para os fabricantes de aeronaves e seus componentes.

Para reduzir esses efeitos várias tecnologias vêem sendo desenvolvidas, principalmente visando a redução da massa das aeronaves mantendo ou aumentando o nível de segurança, dentre estas estão o desenvolvimento e análise de materiais mais eficientes como o trabalho de (Splichal, *et al.*, 2015) no qual foi feita a análise dinâmica de compósitos aplicados na indústria aeronáutica, a comparação com simulações em elementos finitos, o desenvolvimento e análise de novas configurações estruturais e métodos de estimativa de massa para componentes de aeronaves como o de (Dababneh e Kipouros, 2018), que estudou a influência do nível de detalhe na estrutura de aeronaves na estimativa de massa da mesma.

Além disso, com a descoberta dos fenômenos de aeroelasticidade, vários estudos vêm sendo desenvolvidos nessa área visando maior segurança estrutural para as aeronaves e garantia de estabilidade, como o estudo de (Gao, *el al.*, 2019), no qual foi desenvolvido um método adaptativo para controle de aeronaves considerando a flexibilidade alar.

Dessa forma, o presente estudo visa dimensionar e analisar a longarina de uma aeronave radio controlada com o intuído de otimização estrutural com maior rigidez possível.

2. REFERENCIAL TEÓRICO

2.1. Estruturas da aeronave

Aeronaves são, em geral, constituídas pelos componentes básicos: asa, fuselagem, cauda (boom) e superfícies de controle. Cada componente tem uma ou mais funções objetivas e deve ser projetado de forma que haja a garantia que ele cumpra essas funções de forma segura (Megson, 2007). As aeronaves projetadas para a competição SAE Brasil Aerodesign também possuem essa configuração.

A asa, objeto de estudo deste trabalho, é definida por (Ajith, *et al.*, 2017) como um componente com uma superfície que produz sustentação para voo através da atmosfera, ou através de outro gás ou líquido, tendo seção transversal aerodinâmica, produzindo uma relação útil entre a sustentação e o arrasto. As asas são aerofólios presos a cada lado da fuselagem e são as principais superfícies de sustentação do avião em voo. A asa é uma estrutura composta de longarina, nervuras e superfície de revestimento, como ilustra a Fig. 1.

Dessa forma, ainda segundo (Ajith, *et al.*, 2017), por gerar sustentação e ser sujeita a cargas inerciais, estruturais, não estruturais, entre outras, a asa sofre grandes esforços. Estes são resistidos e transferidos em grande parte pelas longarinas, principais componentes estruturais, que consistem em robustas vigas que se estendem ao longo asa.

2.2. Distribuição de sustentação em asa finitas e flexão em vigas

A metodologia apresentada por (Iscold, 2002) utiliza o método de Stender para determinar a distribuição de sustentação em asas finitas. Esse método se baseia na hipótese de que a distribuição de carga ao longo da envergadura é proporcional às áreas de uma asa imaginária (asa de Stender) na qual suas cordas são a média geométrica das cordas real e de uma asa elíptica de mesma área e envergadura.

Figura 2. Relação entre a asa real, asa elíptica e asa e Stender (Iscold, 2002)

As cordas de Stender são:

$$C_{\rm g} = \sqrt{C_{\rm g} \cdot C_{\rm e}} \tag{1}$$

As cordas da asa elíptica são dadas pela Eq. (2) a partir de parâmetros geométricos da asa real.

$$C_{e} = \frac{1}{b^{2}} \cdot \sqrt{\frac{b^{4}\pi - x^{2}S^{2}}{\pi}}$$
(2)

Onde S é a área de asa e b a envergadura da asa.

As cordas da asa real, considerando uma configuração trapezoidal são determinadas por:

XXVI Congresso Nacional de Estudantes de Engenharia Mecânica, CREEM 2019 19 a 23 de agosto de 2019, Ilhéus, BA, Brasil

$$C_{g} = \frac{-C_{r}x}{b} + 2C_{r} - C_{t}$$
(3)

Onde C_r e C_t são as cordas na raiz e na ponta, respectivamente.

Com a distribuição das cordas de Stender, (Iscold, 2002) sugere aplicar o método de Anderson, apresentado por Abbott e Doenhoff. Este método divide a sustentação em duas parcelas: distribuição de sustentação básica e distribuição de sustentação adicional devido ao ângulo de ataque da asa, sendo proporcional ao coeficiente de sustentação total da asa.

A distribuição de sustentação básica é calculada pela equação abaixo:

$$C_{Lb}(y) = \frac{\varepsilon \cdot a_e(y) \cdot S}{C_s(y) \cdot b} L_b(y)$$
(4)

Onde C_{Lb} denota o coeficiente de sustentação básica, ε denota a torção geométrica da asa em graus, medida em relação ao ângulo de sustentação nula, a_e denota a variação efetiva do coeficiente de sustentação do perfil da estação da asa em análise em relação a variação do ângulo de ataque.

$$C_{La}(y) = \frac{S}{C_s(y) \cdot b} L_a(y)$$
(5)

Onde C_{La} denota o coeficiente de sustentação adicional e L_a é um fator de sustentação tabelado para cada seção da asa, de diversos afilamentos e alongamentos.

A distribuição total da asa pode ser escrita como:

$$C_{L}(y) = C_{La}(y) + C_{Lb}(y)$$
 (6)

Dadas as cargas, segundo (Magson, 2007), a flexão ocorre quando forças são aplicadas perpendicularmente, de forma vertical, à seção transversal de um membro. Esse fenômeno faz com que do membro forme uma geometria côncava e outra uma geometria convexa. A parte côncava sofre compressão e a parte convexa sofre tração.

Para perfis simétricos, assume-se que um elemento está sofrendo flexão pura,quando a seção transversal permanece perpendicular às fibras da viga após a flexão e o material e se encontra no domínio da Lei de Hooke.

Pelas considerações, não havendo carregamento axial, a força normal resultante na seção transversal é zero, portanto:

$$\int_{A} \sigma_{N} dA = 0 \tag{7}$$

E, pela definição da deformação tem - se:

$$\varepsilon_{\rm N} = \frac{({\rm R} - {\rm y})\delta\theta - \delta_{\rm z}}{\delta_{\rm z}} \tag{8}$$

2.3. Método de Newton para raízes

Segundo (Chapra e Canale, 2008), esse é um método iterativo a partir do qual pode-se determinar raízes de uma função. O método pode ser deduzido com base em sua interpretação geométrica.

Figura 3. Interpretação geométrica do método de Newton (Chapra e Canale, 2008)

Sendo a aproximação inicial da raiz x_i , pode-se estender uma reta tangente a partir do ponto $[x_i, f(x_i)]$. O ponto onde essa reta tangente cruza o eixo x usualmente representa uma estimativa melhorada da raiz.

$$x_{i+1} = x_i - \frac{f(x_i)}{f(x_i)}$$
(9)

O critério de parada ocorre quando o erro calculado na i-ésima iteração for menor que o erro máximo arbitrário, definido por:

$$e_i = \frac{x_{i+1} - x_i}{x_{i+1}} \cdot 100\%$$
(10)

Assim, este método foi utilizado para a resolução da Eq. (13) de quarta ordem, devido à sua rápida convergência comparado com outros métodos implicando emu ma ganho de processamento computacional.

3. METODOLOGIA

3.1. Determinação das condições de contorno

As condições de contorno são as restrições nas quais o sistema está submetido. No presente trabalho considerou-se a fixação da asa na fuselagem, em condição de voo, como apoio engastado, pois a mesma não pode rotacionar nem transladar. Para o projeto analisado a semiasa possui uma envergadura (comprimento) de 800 mm, portanto supôs-se que a longarina estaria disposta por toda a envergadura, tendo também um comprimento de 800 mm. A figura 4 mostra a longarina discretizada para análise.

Figura 4. Longarina simplificada para análise (Autores, 2019)

Para que as condições para flexão pura fossem atendidas foram desconsideradas a força de arrasto, o torque gerado na longarina e qualquer força normal que possa nela atuar.

3.2. Discretização de equações e algoritmo de dimensionamento da longarina

Atendidas as condições de flexão pura, reorganizando a Eq. (7) e Eq. (8), chega-se na seguinte expressão para tensão:

$$\sigma = \frac{My}{I} \tag{11}$$

Onde M é o momento para uma dada seção da viga, y é a distância entre a linha neutra e o ponto e I o momento de inércia. Como o perfil é tubular segundo (Timoshenko e Gere, 1983) o momento de inércia é dado por:

$$I_{x} = \frac{\pi}{4} (R^{4} - r^{4})$$
(12)

Na fabricação da longarina é utilizado um tubo de alumínio como molde, portanto o raio interno (r) da longarina pode ser aproximado como o raio externo do tubo molde. Assim da Eq. (11) e Eq. (12) obtém-se a equação cuja variável é o raio externo (R). Vale ressaltar que para um perfil simétrico tubular a maior tensão ira ser quando y = R, portanto:

$$\frac{\sigma_{\rm e}\pi}{4} \left({\rm R}^4 - {\rm r}^4 \right) - {\rm M}({\rm x}) {\rm R} = 0 \tag{13}$$

Dessa forma o algoritmo para a obtenção do raio externo funciona da seguinte forma:

1) Dados de entrada: tensão de escoamento (σ_e), raio interno (r), Momento para uma dada posição pelo método de Stender (M(x));

- 2) Variar x de 0 até 0.8m com um passo de 0.01;
- 3) Calcular a raiz de (5) para cada x pelo método de Newton.

Assim, o problema foi modelado no software Matlab considerando a tensão de escoamento de 66 Mpa para compressão e módulo de elasticidade de 114 GPa, de acordo com os trabalhos de (Krueger, *et al.*, 1999) e (Silva, *et al.*, 2012) e raio interno de 18,7 mm.

3.2. Simulação por elementos finitos

Para a simulação, considerou-se as condições de contorno já explicadas. As cargas foram definidas aproximando uma curva aos pontos nos quais a distribuição de carga foi calculada através do seguinte polinômio de terceira ordem:

$$Fy(x) = -0.8108 + 39,9362x + 200,0105x^2 - 59,0886x^3$$
(14)

A sustentação gerada pela asa é transferida para as nervuras e das nervuras é transferida para a longarina, foi determinada assim a região de influência de cada nervura como a metade da distância entre nervuras e foi admitido que toda a carga gerada nessa região é transferida para a longarina através da espessura da nervura como ilustra a Figura 5, onde a origem está centrada na ponta não engastada da longarina.

Figura 5. Região de influência para uma nervura (Autores, 2019)

Sendo calculada a carga na nervura através da área da região de influência pela integração da Eq. (14) no intervalo da região.

A longarina foi dividida em 12 partes (13 nervuras) igualmente espaçadas, simulando as nervuras considerando espessura de 3,2 mm. Foram simuladas no software *Ansys workbench* duas longarinas: a primeira com seção transversal constante na qual o raio interno é 18,7 mm e o raio externo é 23 mm e a segunda com seção transversal variável na qual o raio externo varia de 19 mm a 23 mm.

A malha escolhida para a primeira análise foi através do método sweep com um número de divisões de 2000. Para a segunda foram escolhidos elementos tetraédricos de ordem quadrática com um tamanho de elemento de 0,0009 m.

4. RESULTADOS

4.1. Dimensionamento inicial

Através do código em Matlab obteve-se a distribuição para o raio externo através da longarina de acordo com a Figura 6.

Como esperado, o raio externo aumenta à medida que se aproxima da fuselagem, devido ao aumento do momento na Eq. (5). Obteve-se um raio máximo de aproximadamente 23 mm e um raio mínimo de aproximadamente 19 mm na ponta não engastada da asa (origem).

Figura 6. Distribuição do raio externo no comprimento da longarina (Autores, 2019)

4.2 Análise por Elementos Finitos

Para a primeira análise a malha gerada apresentou uma qualidade ortogonal de 0,8 e um valor de assimetria de 0,42 em média e um Jacobian Ratio de 1,58, mostrando uma boa qualidade. Já na segunda, obteve-se uma qualidade ortogonal de 0,56 e um valor de assimetria de 0,43 em média e um Jacobian Ratio de 1,15, também mostrando uma qualidade aceitável.

Com a seção transversal constante, obteve-se uma tensão equivalente (von-Mises) máxima de 13,49 Mpa, conforme mostra a Figura 7 e uma tensão normal máxima de 15 Mpa. A deformação na ponta da longarina (máxima) obtida foi de 0,98 mm.

Figura 7. Tensões equivalentes (Von-Mises) para seção constante (Autores, 2019)

No segundo caso (seção variando), obteve-se uma tensão equivalente (von-Mises) máxima de 14,44 Mpa, conforme mostra a Figura 8 e uma tensão normal máxima de 18 Mpa. A deformação na ponta da longarina (máxima) obtida foi de 1,88 mm. Neste caso, há uma melhor distribuição das tensões.

Figura 8. Tensões equivalentes (von-Mises) para seção variando (Autores, 2019)

Observa-se que, em ambos os casos se obtiveram tensões equivalentes, com a diferença esperada devido a variação teórica do raio externo ser não linear (Figura 6) dificultando sua replicação. A tensão normal máxima obtida por esse método representa, aproximadamente, 27% da tensão de escoamento do material, mostrando que o dimensionamento inicial pelo código em *Matlab* atende ao critério de falha por ruptura e escoamento, com a possibilidade de diminuição do raio externo.

Apesar de observar-se que a tensão não variou significativamente, considerando as aproximações, a deflexão máxima da longarina variou em 91,8%, aproximadamente, do primeiro caso para o segundo alertando para a observação do deslocamento como critério de falha havendo um balanceamento entre diminuição da seção e deflexão máxima.

5. CONCLUSÕES

Diante do apresentado, constata-se que o dimensionamento inicial à flexão é satisfatório, atendendo ao requisito de falha por escoamento. Além disso, a variação do raio ao decorrer da seção transversal, conforme o dimensionamento, não afeta de forma significativa a tensão máxima medida no material, como mostram as simulações, podendo ser uma forma de redução de massa. Entretanto a redução da seção transversal afeta de forma significativa a deflexão máxima da longarina, devendo leva-la em consideração como critério de falha.

6. REFERÊNCIAS

- Oliviero, F., Frediani, A, 2012. "Conceptual Design of a Very Large PrandtlPlane Freighter". In Springer Optimization and Its Applications Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, p. 305–321.
- Splichal, J., Pistek, A., Hlinka, J., 2015. "Dynamic tests of composite panels of an aircraft wing". Progress in Aerospace Sciences, Vol. 78, p. 50–61.

- Dababneh, O., Kipouros, T., 2018. "Influence of high fidelity structural models on the predicted mass of aircraft wing using design optimization". *Aerospace Science and Technology*, Vol. 79, p. 164–173.
- Gao, S., Zhang, Y., Liu, J., 2019. "Adaptive fault-tolerant boundary control for a flexible aircraft wing with input constraints". *Aerospace Science and Technology*, Vol. 90, p. 34–43.

Megson, T.H., 2007. Aircraft structures for engineering students. Elsevier, Oxford, 4ª edição.

- Ajith, V.S., Paramasivam, R., Vidhya, K., 2017. "Study of optimal design of spar beam for the wing of an aircraft". *International Journal of Engineering Development and Research*, Vol. 5, p. 179–193.
- Iscold, P.H., 2002. Introdução às Cargas nas Aeronaves. UFMG.
- Chapra, S.C., Canale, R.P., 2008. Métodos Numéricos para Engenharia. Ed. McGraw Hill, 5ª edição.

Timoshenko, S., Gere, J.M., 1983. Mecânica dos sólidos. Livros Técnicos e Científicos, Rio de Janeiro.

- Krueger, R., Cvitkovich, M.K., O'Brien, T.K., Minguet, P. J. *Testing and analysis of composite skin/stringer debonding under multi-axial loading*. National Aeronautics and Space Administration, Langley Research Center, 1999.
- Silva, N.S., Santos. P.R., Miranda, V.S., Amorim, D., Carvalho, A. L. C., 2012. "Estudo comparativo em longarinas tipo caixão de madeira freijo e cilíndrico-cônica de carbono para uma aeronave rádio controlada". In Anais do 12° Congresso Nacional de Engenharia Mecânica e Industrial - XII CONEMI. São João Del-Rei, Brasil.

7. RESPONSABILIDADE PELAS INFORMAÇÕES

Os autores são os únicos responsáveis pelas informações incluídas neste trabalho.