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Abstract. Notwithstanding the most realistic rheological models are based on continuum mechanics, research involving 
oil extraction in rocks has emphasized a simpler approach using hydraulic diffusivity models, based on Darcy’s Equation 
to simulation of the fluid flow. The constitutive medium, in turn, besides a number of important properties, is presented 
as a non-isotropic material. Thus, the governing equation in these conditions can be given as a special case of the 
Generalized Scalar Field Equation. On the other hand, the Boundary Element Method (BEM) is a technique that adapts 
easily to non regular regions and has a high accuracy in simulation problems in which the mathematical field is scalar, 
particularly models involving the Darcy’s Equation. However, the non-isotropic BEM model has not found highlighting 
in oil extraction applications, confining itself commonly to a limited set of applications in dams. The BEM should be 
used more ostensibly, since it is particularly suitable to model non regular domains. Aiming future applications in 
reservoir engineering, this paper presents the mathematical modelling and the implementation of the BEM in orthotropic 
problems using the classical formulation that uses a correlate non-isotropic fundamental solution. Numerical tests are 
implemented in problems with  known analytical solution and their results  are also compared with solutions achieved 
by the Finite Element Method (FEM), for a better performance evaluation. 
 
Keywords: Boundary Element Method, Orthotropic problems, Darcy’s model, Finite Element Method, Scalar Field 
Problems. 

 
1. INTRODUCTION  

The diffusion problems comprise an important range of situations with practical interest for engineering, involving 
many physical phenomena, such as heat transfer, electromagnetism, and pressure on fluid flow, among others. Regarding 
the mathematical models, the most known is the Laplace equation, in which the field of variables is time stationary, 
depending only on their spatial position in the domain.  

In many engineering applications, the material properties cannot be assumed isotropic. The commonest examples 
occur in non-crystalline substances such as sedimentary rocks and wood or as a result of manufacturing of materials such 
as a rolling or deep-drawing process. Nowadays, there is the example of composite structures, whose are made from two 
or more constituent materials that, when combined, produce a material with significantly different physical or chemical 
properties. In important practical cases, the goal is to achieve a suitable balance between the strength and the thermal 
conductivity. 

Other modern and important application concerns oil extraction in rocks. Many mathematical models use hydraulic 
diffusivity models based on Darcy’s Equation to simulation of the fluid flow (Brebbia and Chang, 1979; Vanalli, 2004). 
The constitutive medium, in turn, besides a number of important properties, is assumed as a non-isotropic constitutive 
material. In these problems, a rheological approach in which the constitutive properties are based on the Scalar Field 
Equation can be used to achieve a simpler, but effective numerical solution. 

The Boundary Element Method (BEM) is a technique that has a successful retrospective in applications to the Scalar 
Field problems that include the approach of Darcy’s Equation (Chang et al., 1973).  Robust formulations have been 
improved to solve competitively especial cases, such as: physically non homogeneous problems (Divo et al., n.d.), slender 
problems and Poisson’s problems (Wang et al., 2005). The same effort should to be applied to the BEM orthotropic model 
that curiously has not found highlight in context of researches. Some exceptions concern the work of Zhou et al. (2015) 
and certain BEM techniques in which the governing equation is changed to the Poisson (Perez and Wrobel, 1992) or 
Helmholtz Equations (Partridge, 1999). However, these transformations require the solution of domain integrals by 
approximation techniques that commonly use radial basis functions (Buhmann, 2003) and the Dual Reciprocity approach 
(Partridge et al., 1992). Thus, in general, there is an absence of comprehensive and recent bibliography in this sense. 

Aiming to take advantages of important BEM features, particularly related to approach of non regular regions in 
applications to reservoir modeling, this paper presents the BEM mathematical fundamentals and performs the numerical 
solution, compared to the Finite Element Method (FEM) solution, of two basic problems using non isotropic fundamental 
solution in problems with known analytical solution.  
 
2. BASIC EQUATIONS 
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Consider homogeneous domains in steady state situation, without sinks or sources. In these simplified conditions, the 

Generalized Scalar Field Equation (Loeffler, 1992) is given by:  
  ∙ [(ࢄ)ݑࡷ] = 0                                                                                                                                                                           (1) 
 
In Equation (1),  means the Nabla operator, (ࢄ)ݑ is the basic variable or potential; ࢄ =  are coordinates of (௝ݔ)ࢄ

field points and ࡷ is a dyadic that represents the constitutive properties of physical medium. In two dimensions, matrix 
representation of ࡷ has four distinct coefficients that concern an anisotropic material (Carlaw and Jaegger, 1959):  

 
ࡷ = ൬݇ଵଵ ݇ଵଶ݇ଶଵ ݇ଶଶ൰                                                                                                                                                                              (2) 
 
It is important to use the Cartesian coordinate system in coincidence with the physical crystallographic directions, 

since it can simplify the mathematical formulation in situations where exist a constitutive symmetry. Indeed, some 
materials present simpler crystallographic arrangement, such as the monoclinic arrangement, where the dyadic ࡷ is 
symmetric. However, the most important situation is the orthorhombic arrangement, since the matrix ࡷ is diagonal. For 
this last case, Eq. 2 is simplified, that is:  

 
݇ଵ

߲ଶݑ
ଵଶݔ߲

+ ݇ଶ
߲ଶݑ
ଶଶݔ߲

= 0                                                                                                                                                                      (3) 
 
 Figure 1 illustrates the situation described by Eq. 3 and also some significant features of the orthotropic physical 

model. 
 

 Figure 1. An example of a coordinate system to represent an orthotropic domain. 
 
The essential or Dirichlet boundary condition is those in which the potential (ࢄ)ݑ is prescribed. Otherwise, if its 

derivative (ࢄ)ݍ with respect to the outward normal is prescribed, is named natural or Neumann boundary condition. Both 
types of conditions are respectively exposed the in following equations: 

(ࢄ)ݑ  = (ࢄ)ݑ߲  on Γ௨                                                                                                                                                                         (4) (ࢄ)തݑ
߲݊ =  on Γ௤                                                                                                                                                                       (5) (ࢄ)തݍ

 
In Equation (5) n is the external unitary normal vector in the point of coordinates ࢄ and Γ௨ and Γ௤ are parts of the 

complete boundary Γ(ࢄ), as shown in Fig. 1.   
 

3. BOUNDARY ELEMENT INTEGRAL EQUATION  
Deduction of Boundary Element Integral equation can be done considering fundamentals of the Theory of Integral 

Equations (Raisinghania, 2011) or then the principles of the Weighted Residuals Methods, such as presented by Brebbia 
(1978). Considering the first way for convenience, BEM formulation begin taken a strong integral form associated to the 
governing differential equation (Brebbia et al., 1984), that is:  
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න ൭݇ଵ

߲ଶ(ࢄ)ݑ
ଵଶݔ߲

;ߦ)∗ݑ (ࢄ + ݇ଶ
߲ଶ(ࢄ)ݑ

ଶଶݔ߲
;ߦ)∗ݑ ൱(ࢄ

ஐ
݀Ω(ߦ; (ࢄ = 0                                                                                         (6) 

 
In Equation (6) ߦ)∗ݑ;  .is an auxiliary function, which in the boundary element method is the fundamental solution (ࢄ

It corresponds to a known solution of a correlated problem, with infinite domain, in which a concentrated source is applied 
in an arbitrary point ߦ, named source point.   

The operators that make up the kernel of Eq. (6) are self-adjoint (Brebbia and Walker, 1980) , so that it can be applied  
twice the derivative product rule in the kernel and use the divergence theorem in two of the domain integrals, so as to 
obtain the following integral equation, commonly called the inverse integral form: 

 
න ൤−ݑ ൬݇ଵ

∗ݑ߲
ଵݔ߲

n௫భ + ݇ଶ
∗ݑ߲
ଶݔ߲

n௫మ൰ + ∗ݑ ൬݇ଵ
ݑ߲
ଵݔ߲

n௫భ + ݇ଶ
ݑ߲
ଶݔ߲

n௫మ൰൨
୻

݀Γ + න ݑ ቆ݇ଵ
߲ଶݑ∗
ଵଶݔ߲

+ ݇ଶ
߲ଶݑ∗
ଶଶݔ߲

ቇ
ஐ

݀Ω = 0    (7) 
 
For sake of simplicity: 
 

ݍ = ݇ଵ
ݑ߲
ଵݔ߲

n௫భ + ݇ଶ
ݑ߲
ଶݔ߲

n௫మ                                                                                                                                                          (8) 
 

In the same way: 
 
∗ݍ = ݇ଵ

∗ݑ߲
ଵݔ߲

n௫భ + ݇ଶ
∗ݑ߲
ଶݔ߲

n௫మ                                                                                                                                                        (9) 
 

Substituting the Eq. (8) and (9) into Eq. (7), the following equation is obtained: 
 
න ∗ݍݑ−) + (ݍ∗ݑ

Γ
݀Γ + න ݑ ቆ݇ଵ

߲ଶݑ∗
ଵଶݔ߲

+ ݇ଶ
߲ଶݑ∗
ଶଶݔ߲

ቇ
ஐ

݀Ω = 0                                                                                             (10) 
 
For elimination of the last domain integral in Eq. (10) is taken account the features of the fundamental problem, given 

by:  
݇ଵ

߲ଶݑ∗
ଵଶݔ߲

+ ݇ଶ
߲ଶݑ∗
ଶଶݔ߲

= ;ߦ)∆−  (11)                                                                                                                                                  (ࢄ
 
Thus, substituting Eq. (11) into Eq. (10) and applying the properties of the Dirac Delta function, it is possible to 

achieve the following boundary equation: 
 
(ߦ)ݑ(ߦ)ܿ + න ∗ݍݑ) − (ݍ∗ݑ

୻
݀Γ = 0                                                                                                                                        (12) 

 
The coefficient ܿ(ߦ) depends on the position of its argument, named source point, in relation to the physical domain Ω(ࢄ)  +  Γ(ࢄ). Considering the important situation where the source point is located on the boundary Γ(ࢄ), its value  

depends on smoothness of the boundary. (Brebbia et al., 1984).  
 

4. ORTHOTROPIC FUNDAMENTAL SOLUTION  
The focal point in the BEM model for orthotropic problems is the determination of the fundamental solution. Thus, it 

is shown hereinafter in detail. The first step is to operate the following change of coordinates:  
 
௜ݖ = ௜ݔ

ඥ݇௜
                                                                                                                                                                                          (13) 

 
The substitution of Eq. (13) into Eq. (11), the follow equation is obtained: 
 ߲ଶݑ∗
ଵଶݖ߲

+ ߲ଶݑ∗
ଶଶݖ߲

= ∇ଶݑ∗ = ;ߦ)∆−  (14)                                                                                                                                            (ࢄ
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This equation is similar to the Laplace’s fundamental problem. Therefore, the radius ݎ, that means the Euclidian 

distance between the source points and field points ࢄ, now is given by: 
 
ݎ = ቈݔଵଶ

݇ଵ
+ ଶଶݔ

݇ଶ
቉

ଵ/ଶ
= ଵଶݖ] +  ଶଶ]ଵ/ଶ                                                                                                                                               (15)ݖ

 
In Equation (15) ݖଵ e ݖଶ represent the directional components of distance between the source point and Field points 

considered. In two dimensions, the concentrated source ∆(ߦ;  is written as follows in a new coordinates system (ࢄ
(Raisinghania, 2011): 

 
;ߦ)∆ (ࢄ = ;ߦ)∆ ;ߦ)∆(ଵݔ (ଶݔ = ∆൫ߦ; ;ߦଵඥ݇ଵ൯∆൫ݖ  ଶඥ݇ଶ൯                                                                                                     (16)ݖ
 
Mathematically, it is possible the substitution of an external singular source by an equivalent natural boundary 

condition ݍ∗ applied uniformly on a circular boundary located around it.  Considering the equilibrium condition on this 
circular boundary with radius r and substituting the Eq. (16) into Eq. (14), this last written suitably in polar coordinates, 
we have: 

 
න ∗ݍ

୻
݀Γ = න ∗ݑ݀

݀݊
ଶగ

଴
ߠ݀ݎ = − න ∗ݑ݀

ݎ݀
ଶగ

଴
ߠ݀ݎ = න ∆൫ߦ; ;ߦଵඥ݇ଵ൯∆൫ݖ ଶඥ݇ଶ൯ݖ

ஐ
݀Ω = 1

ඥ݇ଵ݇ଶ
                                       (17) 

 
Since the source was replaced by an equivalent natural boundary condition and the angular symmetry exists, the 

differential equation of fundamental problem becomes simpler, it is given by: 
 ݀ଶݑ∗
ଶݎ݀ + 1

ݎ
∗ݑ݀
ݎ݀ = ߲

ݎ߲ ൬ݎ ∗ݑ߲
ݎ߲ ൰ = 0                                                                                                                                               (18) 

 
Making a first integration: 
 dݑ∗
ݎ݀ = ଵܥ

ݎ                                                                                                                                                                                         (19) 
 
Integrating again: 
∗ݑ  = ଵܥ ln ݎ +  ଶ                                                                                                                                                                           (20)ܥ
 
Substituting the Eq. (19) into Eq. (17), the following equation is obtained: 
 
− න ଵܥ

ݎ
ଶగ

଴
ߠ݀ݎ = 1

ඥ݇ଵ݇ଶ
                                                                                                                                                               (21) 

 
Solving the last integral: 
 
ଵܥ = −1

ඥ݇ଵ݇ଶߨ2
                                                                                                                                                                              (22) 

 
Integrating again and imposing arbitrarily at ݎ =  1 the essential condition equal to zero, the constant ܥଶ is determined.  

Thus, in accordance with the original coordinates ݔ௝, we have:  
 
∗ݑ = 1

ඥ݇ଵ݇ଶߨ2
ln 1

൤xଵଶ݇ଵ + ଶଶ݇ଶ൨ݔ
ଵ/ଶ                                                                                                                                                   (23) 

 
The next step is the boundary discretization, wherein it is divided into an arbitrary number of elements, whose 

definition of the function that describes the field variables along them and the geometric shape of the element is done. In 
this work, linear isoparametric boundary elements are chosen. Thus, potential and its normal derivative both vary linearly 
along the straight boundary elements with two nodes located in its extremities.  



Proceedings of ENCIT 2016           16th Brazilian Congress of Thermal Sciences and Engineering Copyright © 2012 by ABCM                   November 07-10th, 2016, Vitória, ES, Brazil   
After the discretization process, the field points ࢄ are used as reference to generate the nodal points, at which the (ࢄ)ݑ potential and normal derivative (ࢄ)ݍ are calculated or prescribed. For each source point ߦ, a scanning related to the 

integration along the boundary elements is performed, generating a system of algebraic equations that can be written in 
following standard matrix form: 

ܝ۶  =   (24)                                                                                                                                                                                         ܙ۵
5. NUMERICAL TESTS  

In order to verify the capability of BEM formulation to solve orthotropic problems, the examples chosen for numerical 
simulations have analytical solution. These solutions were obtained by the Separation of Variables Method. BEM results 
also are compared with the FEM that uses similarly linear functions to interpolate the field variables. This comparison is 
included, in order to demonstrate the technique effectiveness of BEM in this type of application. 

Meshes with different number of nodes are used with both BEM and FEM in the numerical simulations performed. 
Potential values in internal points with same coordinates are chosen for comparison with analytical values so that a suitable 
evaluation of the accuracy could be done. In calculating of the average percentage relative error, it was considered the 
highest analytical value of the potential as the denominator.   

 
5.1 First example  

A square domain with unitary sides is subjected to boundary conditions as shown in Fig. 2. Physically, this problem 
can be interpreted in various ways, depending on the convenience. It can be regarded as a plate in which a temperature 
field is prescribed in outline but could also be interpreted as a physical domain or porous region, subjected to a potential 
profile or different piezometric potentials.  

 

 Figure 2. Square plate subjected to both potential such as fluxes prescribed on the boundaries. 
 
The analytical solution for the temperatures in this problem, calculated in a rectangular domain with dimensions (0, ܽ) × (0, ܾ) using the Variable Separation Method, is given as follows: 
 

,ݔ)ݑ (ݕ = 2
ߨ ෍ (−1)௡ାଵ + 1

݊ sin ቀ݊ݔߨ
ܽ ቁ

∞

௡ୀଵ

sinh ቌ݊ܽݕߨ ඨ݇௫݇௬ቍ

ቌ݊ܽߨ ඨ݇௫݇௬ቍ cosh ቌܾ݊ܽߨ ඨ݇௫݇௬ቍ
                                                                        (25) 

 
A physical interpretation of this example is helpful. The flows coming through all the edges in which the uniform 

potential is prescribed and go out along the edge where the normal derivative of potential is prescribed. Thus, there is a 
greater concentration of fluxes in regions near of the vertical superior line.  

For convenience, the preliminary BEM results are obtained considering isotropic properties. Subsequently, the 
properties will be modified in order to emphasize differences caused by the orthotropic properties for each coordinate 
direction in the numerical model. Particularly, the values of the diffusivity were assumed distinct from real situations, for 
convenience only, because the goal here is to evaluate the performance of the numerical method. However, in problems 
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governed by the Laplace equation, only the relationship between the diffusivity properties is important to calculate the 
potential.  

Figure 3 shows the average percentage relative error for the isotropic case with ݇௫ = ݇௬ = 1, that represents the 
Laplace’s problem. It can be seen that the results are very good and the values of error are decrease monotonically with 
the mesh refinement. 

 

 
Figure 3. BEM results for the first example considering ݇௫ = ݇௬ = 1. 

 
Aiming to demonstrate the capability of the BEM model, results obtained using the FEM are presented in Fig. 4 for 

better comparison. FEM results of potential were calculated in points with the same coordinates used to the BEM 
simulations.  

It is observed in this case a clear advantage of BEM model, reaching levels much smaller error than the FEM for 
meshes with much less number of nodal points. It is noteworthy, particularly the reduced error value already achieved 
with coarser meshes. 

 

 
Figure 4. FEM results for the first example considering ݇௫ = ݇௬ = 1. 

 
In a second test, the values of the diffusivities are changed to ݇௫ = ݇௬ = 0.5. Thus, the problem is still isotropic, but 

the intention here is to assess the transformation of variables effect, given by Eq. (13), since the distance from the source 
point to the integration points on the boundary is reduced.  Particularly, the values of the diffusivity were assumed distinct 
from real situations, for convenience only, because the goal here is to evaluate the performance of the numerical method. 
However, in problems governed by the Laplace equation, only the relationship between the diffusivity properties is 
important to calculate the potential. 

Figure 5 presents the results and, in fact, the errors in all meshes were increased and particularly the accuracy in the 
coarse mesh was severely reduced.  
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Figure 5. BEM results for the first example considering ݇௫ = ݇௬ = 0.5. 

 
Initially, this behavior suggests numerical integration problems, that occur when internal points are positioned very 

close to the field point on the boundary elements, being necessary to implement an appropriate scheme for numerical 
integrations, called quasi-singular, which was not implemented in computational code used here. Indeed, the quotient 
given by Eq. (13) would make a similar effect as locate the points closer, for values of properties smaller that one. For 
better evaluation concerning the cause of this problem, two easy tests are implemented in this research.  

First, the number of points in Gaussian Quadrature was increase in twice, but results do not present any change, 
indicating that the numerical problems actually are not related to integration problems.  

In a second experience, the properties are changed to values that enlarge the distance in fundamental solution given 
by Eq. (23). Comparisons between results achieved for a mesh with 44 boundary nodes show that the results are sensible 
to changes occurred in the Euclidian radial distance used to fundamental solution and its normal derivative, as shown in 
Fig. 6. Making a mesh refinement, both curves converge to the analytical solution with the mesh refinement; however, 
the way of convergence is different, one of them approaches from below, the other above. 

 

 Figure 6. Effect of changed coordinates in BEM results. 
 

In the next simulation, the values of diffusivity are arbitrated as ݇௫ = 2 and ݇௬ = 0.5.  In practical problems, the 
quotient between orthogonal properties does not overcome this range. The results achieved in the solution of this 
orthotropic situation are shown in Fig. 7. 

 

12,55%

6,87%

3,34%
1,71% 0,86%

0,00%
2,00%
4,00%
6,00%
8,00%

10,00%
12,00%
14,00%

0 50 100 150 200 250 300 350

Erro
r 

Number of boundary elements 

BEM



Proceedings of ENCIT 2016           16th Brazilian Congress of Thermal Sciences and Engineering Copyright © 2012 by ABCM                   November 07-10th, 2016, Vitória, ES, Brazil 
 

 

 
Figure 7. BEM results for the first example considering ݇௫ = 2 and ݇௬ = 0.5. 

 
Concerning the previous simulation, a significant loss of accuracy is observed in all meshes used, although the level 

of error is still quite good, particularly in finer meshes. As demonstrated, one cannot attribute this deterioration in 
performance to the different values of the integration radius. Despite this, the mesh refinement keeps reducing the values 
of percentage error monotonically, confirming the convergence of the method. By the way, numerical results achieved 
with the FEM have similar accuracy, as shown in Fig. 8. Concerning the solution of isotropic case shown previously, the 
FEM performance was improved, if compared to the BEM.    

 

 
Figure 8. FEM results for the first example considering ݇௫ = 2 and ݇௬ = 0.5. 

 
5.2 Second example  

The same square domain using in previous example is now submitted exclusively to the Dirichlet boundary conditions, 
according is shown in Fig. 9.  
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 Figure 9. Square plate subjected exclusively to prescribed potentials on the boundaries. 
 

The analytical solution for the temperatures in this problem, calculated in a rectangular domain with dimensions (0, ܽ) × (0, ܾ) using the Variable Separation Method, is given as follows: 
 

,ݔ)ݑ (ݕ = 2
ߨ ෍ (−1)௡ାଵ + 1

݊ sin ቀ݊ݔߨ
ܽ ቁ

∞

௡ୀଵ

sinh ቌ݊ܽݕߨ ඨ݇௫݇௬ቍ

sinh ቌܾ݊ܽߨ ඨ݇௫݇௬ቍ
                                                                                              (26) 

 
There is a discontinuity in the potential field, so that the heat fluxes are very intense in these regions, relative to the 

upper corners. This situation is unrealistic in practice, but serves particularly to test the robustness of the BEM, which 
deals with the discontinuous values in your system of equations, since it is a mixed method, dealing with potential and its 
normal derivative together. Already the FEM, by its mathematical formulation eliminates the rows and columns of the 
matrix system that are related to prescribed potential conditions, mitigating the effect of discontinuities in this variable. 

Despite these discontinuities – that would generate in matrix system two equal lines, requiring the changing of 
coordinates of double nodes in the corner – good results were achieved for finer meshes for this simulation, as shown in 
Figure 10, taking the constitutive properties ݇௫ = 2 and ݇௬ = 0.5. 

 

 
Figure 10. BEM results for the second example considering ݇௫ = 2 and ݇௬ = 0.5. 

 
It is noteworthy that ݇௬ being four times smaller than ݇௫ and being heat flows directed in the vertical direction, the 

problem becomes numerically still more difficult. This justifies the high error achieved for coarse meshes. However, the 
BEM absorbed well as the discontinuity, since the error curve of BEM has been presented monotonicity and the 
percentage error was reduced continually with the mesh refinement. 

For better evaluation, results achieved with the FEM are shown in Fig. 11. It can observed a slightly superiority of 
FEM in this case, since for the same number of nodal points its results are in near of 1,5%.  
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It is noteworthy that in BEM model, values of potentials within the domain are calculated on the basis of boundary 
nodal values of potential and normal derivatives, previously calculated. As stated earlier, the discontinuities generate 
extremely high fluxes on the boundary, which contribute to the relative loss in accuracy of BEM results. 

 

 
Figure 11. FEM results for the second example considering ݇௫ = 2 and ݇௬ = 0.5. 

 
5. CONCLUSIONS  

Being a technique that discretizes just the boundary, the BEM presents suitable features to model non regular domains, 
that is a topic that has been object of many researches involving numerical methods applied in engineering. However, its 
orthotropic models have not been widely researched, despite the interest of these problems and optimal performance of 
BEM in other scalar field problems.  

Thus, the purpose of this paper was to examine the application and potentiality of the BEM in this kind of problem in 
two dimensions. Two simulations were performed in detail, to examine the particularities of BEM for different relations 
between constitutive properties. Results were compared with available analytical solutions and the FEM. The performance 
was satisfactory, since the percentage average error always decrease monotonically with the mesh refinement, reaching 
small values that are suitable regarding to usual engineering applications. 

However, it was observed that the degree of orthotropy affects the BEM results. It is due to the mathematical procedure 
used for transform the orthotropic problem in an equivalent isotropic one, in which is done by a change in coordinates. 
This alters the Euclidian distance that characterizes the fundamental solution and its normal derivative in a proportion 
given by the quotient given by the orthotropic properties. This effect is more sensible in coarse meshes; despite the final 
errors also increase more slightly for finer meshes. Since that in problems governed by Laplace’s Equation with two-
dimensions just the quotient between properties is important, a more suitable BEM performance is achieved avoiding that 
one Cartesian coordinate is more affected than other.  

It must be highlighted that the orthotropy also affected the performance of the FEM, as shown in comparisons 
performed.   

Lastly, is possible to conclude that the BEM performance was higher than that presented by FEM in the case where 
Neumann and Dirichlet conditions appeared together, which represents the practical engineering problems. In the case 
where there were discontinuities resulting from the exclusive application of Dirichlet conditions, the BEM had lower 
performance than the FEM. The reason is due the BEM internal values are obtained from the combination of potential 
and flows calculated on the boundary. However, even this test, purposely addressed to evaluate its numerical robustness, 
the BEM showed continuous reduction of errors and quite acceptable results. 
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