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Abstract. The present work is aimed to demonstrate the solution of an inverse heat conduction problem dealing with 
the estimation of a internal heat source in a multi layer heterogeneous media, based on temperature measurements at 
the external surface. For the direct problem, a one-dimensional model based on the thermal resistance analogy was 
used. The inverse problem is solved with a Bayesian approach that is basically concerned with the analysis of the 
posterior probability density, which is the conditional probability of the parameters given the measurements. Simulated 
temperature measurements are used in the inverse analysis in order to show the capabilities of the proposed approach, 
and them a real experimental data is used to demonstrate the feasibility of the proposed methodology. The 
experimental results are provided via non-intrusive infrared thermography.  
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1. INTRODUCTION 
 

The thermal management of electronic devices is very important since high working temperatures can be very 
prejudicial to the service life of electronics, especially for switching devices such as insulated gate bipolar transistor 
(IGBT), which basically is a power semiconductor device primarily used as an electronic switch which combine high 
current density with fast switching (Chang et al., 2016) and are fundamental elements of power conversion and are used 
extensively, e.g., variable frequency drives, electric cars and trains. The current flow in these devices induces fast 
temperature increase inside the module by the Joule effect and due to this fact, the temperature have to be controlled not 
to exceed a maximum value pre-established. Near this temperature, some undesirable effects like the change of 
electrical properties, the increase of leakage current, change of the threshold voltage and commutation time can be 
mentioned (Wu et al.1996; Sheng et al., 2000). Furthermore, it is known that the high internal temperatures are 
responsible of multiples operational failures and also reduces drastically the reliability and the equipment life making 
the thermal management extremely important to the correct operation (Luo, 2002). Thus, the inverse problem can be a 
useful tool to the thermal management, estimating the heat-source value inside the module, helping to establish the 
operating range of work of the device.  

An infrared camera was used in an experiment to measure temperatures at the module surface since infrared 
thermography is a non-intrusive technic with high definition and low uncertainty, which has already been used to study 
the thermal management of electronic devices (Chang et al., 2016; Mital, 2006). These temperature measurements will 
serve as input data to the inverse problem. Also, numerical simulations and a one-dimensional model were performed to 
help the inverse problem analysis. The simulations were performed in the software COMSOL Multiphysics, using a 3D 
geometry to represent the real IGBT module. However, these numerical simulations run at high computational cost and 
are impracticable to use it as the direct problem in the estimation process, which evaluates several time the direct 
problem. Therefore, a one-dimensional model approach was used to overcome this problem, using the analogy of 
thermal resistance, commonly used in thermal management of electronics (Yun et al., 2001; Skibinski and Sethares, 
1990). Using the information of temperature of the 3D simulation, a 1D model with thermal analogy could properly 
represent the numerical simulation with the advantage of being much simpler and lighter computationally. 

Once the 1D model is defined as the direct problem, the inverse analysis can be used to estimate unknown 
parameters using the information of the temperature measurements (Hsu and Chu, 2004; Janicki and Napieralski, 2004). 
The method of Markov Chain Monte Carlo was adopted to estimate the diode heat-source using the temperature 
acquired by thermal images from the infrared camera. 
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2. EXPERIMENT 
 

The experiment consists of acquiring temperature measures of the open IGBT module that was disconnected from 
the plastic case (Fig. 1.a). Each module contains two sub-models and each sub-model contains one diode and one IGBT 
chip. The circuit diagram is shown in Fig. 1.b. The IGBT module was fixed on a support where an infrared camera 
(FLIR A645Sc25°) is placed on top to take thermal images from the IGBT surface (Fig. 2). One power supply (item 7 
from Fig. 2) was regulated to stabilize the voltage between the gate and emitter and another power supply (item 8 from 
Fig. 2) provided energy to the collector to emitter. With this setup, three experimental configurations (cases 1-3) were 
tested to determine the temperature profile on the open IGBT module surface, which was painted by graphite paint with 
known emissivity. All the configurations are detailed in Tab. 1. The experiments were repeated at last two or three 
times with the mean value and the experimental error presented in Tab. 1. 
 

diode

metal plateIGBT chip

Open IGBT module
 

a) 

 
b) 

Figure 1. IGBT module (Double module Siemens BSM 50GB 120DN2): a) open and disconnected from the plastic 
case; b) circuit diagram, with diodes in green and IGBTs in red. 

 

 
Figure 2. Experimental setup. 1- Infrared camera; 2- Oscilloscope; 3- Multimeter; 4- Siemens IGBT Module; 5- Fan;  

6- Current probe; 7- High current/voltage power supply. 
 

Table 1. Different experimental configurations with its parameters. 
Case Supplied components Current (A) Voltage, VCE (V) Power (W) 

1 Left diode 6.15 ± 0.12 1.0 6.15 ± 0.12 
2 Left IGBT 4.91 ± 0.10 1.25 6.14 ± 0.12 
3 Right diode 6.16 ± 0.12 1.0 6.16 ± 0.12 

 
The results of the three configurations showed in Tab. 1 are presented in Fig. 3. Also, it is presented some thermal 

images for different times of the experiment for the experiment of case 1. As we can see, the ΔT for the three cases 1, 2 
and 3 are almost equal with ΔT of 44.25°C, 44.93°C, e 44.92°C, respectively. These temperature values will be used as 
comparison with the numerical simulation as well as information for the estimation process in the inverse analysis. For 
the thermal images, the maximum temperature is indicated by a red triangle and the minimum temperature by a blue 
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triangle. The black rectangle delimits the area which the temperature measurements are taken. As it is shown in Fig. 3, 
for short times of experiment, in the beginning of the experiment, the area which the left diode is positioned coincides 
with the area which has the highest temperature. It occurs due to the fact that in this experiment, the supplied 
component is the left diode which contains a heat-source due to the current and voltage, dissipating power (Fig 3.a). As 
time proceeds, the temperature in the module tends to be more uniform since the heat is spreading to the rest of the 
components, but the highest temperature measured still remains in the left diode area (Fig. 3.b). For higher times, when 
the steady state is reached, the temperature does not increase more and the temperature is more uniform than shorter 
times but the highest temperature still in the left diode (red triangle), which is expected since the heat-source is located 
in the left diode (Fig. 3.c). 

 

Steady	
state

45°C

a) b) c)

 
Figure 3. Maximum IGBT surface ΔT for the cases 1, 2 and 3. 

 
3. NUMERICAL SIMULATION 
 

Numerical simulations of the 3D geometry representing the IGBT module used in the experiment described 
previously were performed using the software COMSOL Multiphysics (Fig. 4). It was considered that the module is 
composed by five different materials, each one forming a layer as we can see in Fig. 4. The properties used in the 
simulation are described in Tab. 2, where h1 is the convection heat transfer coefficient of the top surface (layer 1) and h5 
of the bottom surface (layer 5). Their values were determined by convection heat transfer correlations (Ozisik, 1985). 
The parameter hr is the radiation heat transfer coefficient, calculated with the emissivity of the graphite paint (ε=0.97) 
for the top surface and for the bottom surface an emissivity value of ε=0.05, referred to a polished metal (Minkina and 
Dudzik, 2009), the Stefan-Boltzmann constant (σ=5.67× 10-8 W/(m²K4)) and the room temperature (T∞). The parameter 
Pot is the power and g is the heat-source, calculated by the power divided by the volume of the layer where it is 
imposed. The properties used in this simulation were chosen to recreate the case 1 in Tab. 1. 
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Figure 4. Geometry used in 3D simulation with 

heat source in the left diode. 

Table 2. Properties used in simulation. 

Layer Material Thickness 
[mm] 

Density 
[kg/m³] 

Thermal 
cond. 

[W/(mK)] 

Specific 
heat 

[J/(kgK)] 
1 Aluminum 0.07 2700 237 900 
2 Silicon 0.314 2330 148 700 
3 Copper 0.286 8920 400 380 
4 Al2O3 0.668 3960 20 753 
5 AlSiC-9 3 3000 180 434 

h1=10 W/(m²K) h5=12 W/(m²K) 
34rh Tεσ ∞=  Tinitial=T∞=25 ºC 

Vol=6 mm × 6 mm × 0.7 mm = 2.52 mm³ = 2.52 × 10-9 m³ 
Pot=6.15 W g=Pot/Vol=2.44× 10-9 W/m³  

 

 
Before running the simulations, a mesh convergence analysis was carried out  to determine the influence of the mesh 

size on the simulation results. Two analyses were performed: spatial, where three meshes were used, named N1, N2 and 
N3; and temporal, where another three meshes were used, M1, M2 and M3. The meshes are detailed in Tab. 3 and Tab. 
4. 
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Table 3. Different spatial meshes. 

Mesh Max. Element Size Num. of elements 
N1 0.5 mm 164900 
N2 0.3 mm 680244 
N3 0.2 mm 1393064 

 

Table 4. Different temporal meshes. 
Mesh Step time Num. of elements 
M1 100 s 20 
M2 50 s 40 
M3 25 s 80 

 

 
The results for both analyses are presented in Tab. 5 and Fig. 6, for the spatial mesh and Tab. 6 and Fig. 7, for the 

temporal mesh. As we can see, in Tab. 5 the relative errors between the meshes are very low for different positions, 
which mean that the size of the mesh has no significant influence in the temperature results. The same behavior is 
noticed in Tab. 6, where the relative errors between meshes are very low again. So, the mesh N1 and M1 was chosen to 
run the simulations. 

 

Table 5. Relative errors between the spatial 
discrete meshes. 

y (mm) Rel. error N1 
and N2 (%) 

Rel. error N2 
and N3 (%) 

0 0.0076738 0.00180411 
0.07 0.00767585 0.00180421 

0.384 0.00762821 0.00179341 
0.67 0.00755325 0.00177572 

1.338 0.00164767 0.000384905 
4.338 0.00093093 0.000212521 

 

 
Figure 5. Comparison of special discrete meshes. 

 

Table 6. Relative errors between the time 
discrete meshes. 

Time (s) 
Rel. error 

M1 and M2 
(%) 

Rel. error 
M2 and M3 

(%) 
500 0.145328 102.994 10−×  

1000 0.000024707 139.64 10−×  
1500 0.00671847 101.548 10−×  

 

M1

M2

M3

 
Figure 6. Comparison of time discrete meshes 

 
With the meshes defined, simulation was run for the case 1 showed in Tab. 1. The comparison of simulation and 

experiment are shown in Fig. 7. We can notice that for the initial time, there is a significant difference between the 
temperatures. But as long as the experiment time runs, both results show a better agreement at steady state, with 
temperature differences of only 1.96 ºC, about 2.75% of relative error. 
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Figure 7. Comparison between experiment and 3D simulation and thermal images for different times of experiment.  

 
4. ONE-DIMENSIONAL MODEL 
 

A steady state one-dimensional model was built to describe the temperature profile of the IGBT module to make 
easier the process of the parameter estimation, since a three-dimensional model is too expensive computationally and 
the estimation process require a high number of evaluations of the direct problem. It can be done by applying the 
thermal resistance analogy (Ozisik, 1985). The method used is similar to the thermal network (Luo, 2002). The thermal 
resistances can be calculated with a curve fitting using the information of temperature from an experiment (Skibinski 
and Sethares, 1990) or from a numerical simulation (Yun et al., 2001). The 1D model scheme is presented in Fig. 8, 
where Mi and Li represent the material and the thickness of the layer i, respectively. T i  and yi represents the 
temperature at the interfaces, respectively. The parameters used in the 1D model are the same specified in Tab. 2. So the 
thermal resistances can be calculated by (Ozisik, 1985): 

 

* 1 ,i i
i
T T

R
Q

− −
=  where  

: Layer Number
: Temperatureat interfacei

i
T i

           (1) 

 
The thermal resistances values are presented in Tab. 7. They were calculated using the information of temperature of 

the 3D simulation with the properties of Tab. 2, i.e., with a heat source of value g. There is no thermal resistance at the 
first layer since it was considered a heat source, making the temperature profile at this layer not linear but parabolic so it 
cannot be used the thermal resistance analogy. 

 

L1 L5L2 L3

y2y1 y3 y4 y5y0

h1

hr
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T∞

L4

M1 M5M2 M3 M4

Heat Source

 
Figure 8. 1D heterogeneous media model with heat source. 

Table 7. Values of the thermal resistances. 
Layer Value (K/W) 

R2 0.000462146 
R3 0.000121871 
R4 0.0044787 
R5 0.000467793 

 

 
With the thermal resistances calculated with an imposed heat-source g in the first layer, the 1D temperature profile 

was compared to the 3D simulation (Fig. 9). It was shown that with these values of resistance, the 1D model could 
represent well the 3D simulation. In order to check the reliability of the method, another three values of heat-source 
were imposed in the simulation and compared with the 1D model with the thermal resistances calculated previously 
(Tab. 7). As can be seen, the relative error is very low for all the cases, showing that the 1D model could be a good 
approximation of the 3D model, helping the reduction of computational time in the estimation process describe later. 
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Figure 9. Comparison of 1D model with 3D simulation. 

Table 8. Relative error (%) from the 
comparison of the results with different heat 

source values. 
 Heat Source 

y (mm) 0.5g 2g 3g 
0.07 0.202365 1.26078 3.27651 

0.384 0.202372 1.26093 3.27706 
0.67 0.202459 1.26296 3.28436 

1.338 0.202479 1.26347 3.28622 
4.338 0.203049 1.28165 3.35371 

 

 
5. INVERSE PROBLEM 
 

The next step is the inverse analysis and parameter estimation process. In this work, the method of Markov Chain 
Monte Carlo was adopted. It consists in an iterative process where each iteration depends only on the previous iteration 
that, in general, has a well-defined limit behavior when a sufficient number of iterations are achieved. Then, at the end 
of the iteration process, the parameter estimated is determined from the statistical evaluation of the results. 

Inverse problems are classified as ill-posed while the direct problems are well-posed. (Beck and Arnold, 1977; 
Alifanov, 1994; Ozisik and Orlande, 2000). Estimation problems with Bayesian approach has two components: the 
likelihood function of P, p(Y|P), which provides information about the chance of each value of P have led to that 
observed value for Y, and the distribution p(P), called prior density, which contains the probability distribution of P 
before the observation of the value Y. It is reasonable that the inference process is based on the probability distribution 
of P after watching the value of Y. This distribution, p(P|Y), is called a posteriori distribution, obtained by the Bayes 
theorem in Eq. (2). 
 

( ) ( ) 1( ) ( ) ( )
( )

where : { }, 1,..., Unknown parameters vector; :Number of parameters

{ }, 1,..., Experimentalmeasures vector; :Number of measures
j par par

s meas meas

p p
p p p

p const

P j N N
Y s N N

= =

= =

= =

Y P P
P Y Y P P

Y

P
Y

     (2) 

 
Once obtained the posteriori distribution, we can summarize the information contained by calculating statistical 

measurements like the mean value, mode, median, variation and standard deviation, precision and mode curvature. 
Thus, posteriori probability density function could be described by being proportional to the product of the likelihood 
and the priori distribution: 
 
( ) ( ) ( )p p p∝P Y Y P P               (3) 

 
Assuming that the temperature data are independent and identical distributed, the likelihood can be written as: 
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1 2
2 2
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where T(P) is the temperature calculated as a function of the parameters to be estimated and Y are the measured 
temperatures. The Metropolis-Hastings algorithm was used in the Markov Chain Monte Carlo method (Metropolis 
et.al., 1953; Hastings, 1970; Gamerman and Lopes, 2006). The algorithm uses a probability density function π(P*|P). 
Supposing that the chain is in a state P, a new candidate value P* is generated from the auxiliary distribution π(P*|P) 
and is accepted with the probability described by the Eq. (5), where α is called Hastings ratio. 
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where p(P|Y) is the posteriori distribution of interest. To begin the estimation process, is necessary to define a range 
with a minimum and a maximum value of search as well as an initial guess for the iterative process. It is necessary to 
define the number of states to the iteration and also the number of states who will be discarded, which is assumed that 
the iteration did not reach the equilibrium at these initial states, called heat states. 
 
5.1 Simulated temperature measurements 

 
Firstly, an analysis using a simulated temperature measurement was done in order to test the reliability of the one-

dimensional model in the estimation process. In this step, one simulated measured temperature, located at the surface of 
the left diode (colored in blue in Fig. 4), was adopted as the input data, since it is used the one-dimensional model and 
only one temperature is defined for each interface layer. The simulated measured temperature was calculated by Eq. (6). 
The properties used in this analysis are described in Tab. 9. Figure 10 shows the Markov chains resulted from the 
estimation process using the properties in Tab. 9. Table 10 shows the results after the statistical evaluation and Fig. 11 
shows the frequency distribution of the estimated values in the MCMC method. A different value of heat-source was 
chosen to not run this test case with the value g, which was used to calculate the one-dimensional model. So the value 
of 2.5g was chosen as the exact value of heat-source for this test case. 

 
, :  Random number with normal distribution [0, ]exactY T ε ε σ= +          (6) 

 Table 9. Properties of MCMC method for 
the heat source estimation. 

Exact value 2.5g 
Measures 1 

Standard deviation (σ) 5ºC 
Priori distribution Uniform 
{Minimum value,  
Maximum value} 

{0, 3g} 

Initial guess 0.01g 
Number of states 5000 

Heating states considered 1250 
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Figure 10. Markov chains for the simulated measures. 
 

Table 10. Results of the MCMC method. 
Accepted states 4313 

Estimated mean value 2.4483g 
Confidence interval 

(99%) 
{2.13324g  ,  
2.76336g} 

 

Fr
eq
ue
nc
y

Estimated value
 

Figure 11. Histogram distribution of the estimated values. 
 
As can be seen in Fig. 10, which shows the ratio between the estimated heat-source and g, the chains were 

oscillating around values closer to 2.5, which is the expected value. It is confirmed in Tab. 10, which shows the mean 
value of the estimation and the confidence interval with 99%. As we can see, the estimated mean value is very close to 
the expected (2.5g) and the exact value is in the confidence interval. It means that the MCMC method with the one-
dimensional model as the direct problem could estimate the heat-source with the parameters listed in Tab. 9. 
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5.2 Real temperature measurement 
 
After the test case, real measured temperature was used to run the MCMC method, using the one-dimensional 

model as the direct problem, which will make the inverse problem viable due to the reduced computational cost. One 
value of measurement temperature at the left diode surface, acquired by the experiment referred to the case 1 in Tab. 1, 
at the steady state, was taken by the infrared camera and was adopted as input data. The properties of the iteration 
method are described in Tab. 11. Figure 12 shows the Markov chains resulted from the estimation process using the 
properties in Tab.11. Table 12 shows the results after the statistical evaluation and Fig. 13 shows the frequency 
distribution of the estimated values in the MCMC method. 

 

Table 11. Properties of MCMC method 
for the heat source estimation. 

Calculated heat source  
Measures 1 

Standard deviation 5ºC 
Priori distribution Uniform 
{Minimum value, 
Maximum value} 

{0,3g} 

Initial guess 0.01g 
Number of states 5000 

Heating states considered 1250 
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Figure 12. Markov chains for estimation of heat source of the 

experiment. 
 

Table 12. Results of the MCMC method. 
Accepted states 2735 

Estimated mean value 1.04744g 
Confidence interval 

(99%) 
{0.73971g  ,   
1.35517g} 

 

Estimated value
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Figure 13. Histogram distribution of the estimated values. 

 
As can be seen in Fig. 12, which shows the ratio between the estimated heat-source and g, the chains were 

oscillating between around values closer to 1, which is the expected value. It is confirmed in Tab. 12, which shows the 
mean value of the estimation and the confidence interval with 99%. As we can see, the mean value estimated is very 
close to the expected (g) and the exact value is in the confidence interval. It means that the MCMC method with the 
one-dimensional model as the direct problem could estimate the heat-source with the parameters listed in Tab. 11 with 
real temperature measures taken with the infrared camera. 
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