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Abstract: In this work, a two-dimensional neutron transport problem defined in a homogeneous medium is treated. The
domain configuration is defined by a fixed source enclosed in a rectangular region surrounded by vacuum boundary
conditions. A combination of nodal schemes with explicit solutions for the transverse-integrated equations, using the
Analytical Discrete Ordinates (ADO) Method, is used to evaluate averaged scalar fluxes for regions of the domain. The
unknown angular fluxes on the contours, that appear from the derivation of the nodal schemes, are added to the source
term and differently of previous works, here those unknowns are approximated by three types of functions: constant, linear,
and exponential. In addition, an alternative multidimensional quadrature scheme, named QR, was used to describe
the discrete ordinates directions. Such scheme allows the use of higher-order approximations than the classic LQN
(level symmetric) quadrature scheme. Numerical results obtained by the methodology, which may be used in radiative
transfer applications, are presented and compared with the literature. In particular, the effects of the boundary fluxes
approximations are analyzed.
Keywords: Two dimensional transport , Discretes ordinates, Fixed-source problems, Homogenous medium

1. INTRODUCTION

Nodal schemes have been widely used for solving multidimensional transport problems related to several applications
like "oil well logging" (Badruzzaman, 1985; Azmy, 1988); neutron and radiation transport (Lawrence, 1986; Barros and
Larsen, 1992; Rohde et al., 2012; Okumura et al., 2014; Naqa et al., 2003). Due to the inherent integration procedure the
complexity of the original model is reduced and, in consequence, such approaches are amenable to analytical techniques.
Nodal methods are also recognized for its great performance on coarse meshes. In this context, we use the ADO method
(Analytical Discrete ordinates) (Barichello and Siewert, 1999) along with nodal schemes to solve the discrete ordinates
form of the two-dimensional neutron transport equation in Cartesian geometry. In contrast to the majority of numerical
methods, such approach has provided explicit expressions for the averaged angular fluxes in terms of the spatial variables,
Form fixed source problems have been considered (Barichello et al., 2011; Prolo Filho and Barichello, 2014; Tres et al.,
2014; Picoloto et al., 2015).

A relevant issue related to nodal methods is the definition of auxiliary equations needed to represent unknown angular
fluxes on the contours of the domain or interfaces, arising from the integration procedure. In order to bring greater
contributions to the solution of homogeneous problems using ADO method, in this paper three different approaches are
proposed to the treatment of such unknowns: constant, linear and exponential approximations. In addition, the discrete
angular directions are represented trough the use of different sets of numerical quadrature schemes. The LQN (Lewis and
Miller, 1984) (Level Symmetric Quadrature) and QR (Abu-Shumays, 1977) (Quadruple Range). The latter allow us to
consider higher order number of directions than the classical scheme. The final goal is to perform a general analysis in
order to establish reference results.

2. FORMULATION

We begin with the discrete ordinates approximation of the time-independent two dimensional neutron transport equa-
tion, in a non-multiplicative medium, with isotropic scattering and one energy group, in a rectangular domain D, with
x ∈ [0, a] and y ∈ [0, b], written in discrete ordinates form as (Lewis and Miller, 1984)

µi
∂

∂x
Ψ(x, y,Ωi) + ηi

∂

∂y
Ψ(x, y,Ωi) + σtΨ(x, y,Ωi) = Q(x, y) + σs

M∑
k=1

wkΨ(x, y,Ωk) (1)

for i = 1, . . . ,M , where M it is defined according to the quadrature used; wi are the weights associated to the directions
Ωi = (µi, ηi); Q(x, y) is the isotropic neutron source term; and σt and σs are the total and scattering macroscopic cross
sections, respectively.

We consider the domain subdivided into regions named as r defined as x ∈ [am−1, am] and y ∈ [bm−1, bm], with
0 ≤ am−1 < am ≤ a and 0 ≤ bm−1 < bm ≤ b. Here m indicates the number of divisions of each spatial variables



interval of definition, as represented in Figure 1. Following (Barichello et al., 2011), we establish an ordering on the
directions Ωi such that for indices i = 1, . . . ,M/2 the directions have coordinate µi > 0; and µi < 0 for indices
i = M/2 + 1, . . . ,M .

Figura 1: Representation of the domain.

Therefore, using nodal method techniques to obtain the the one dimensional transverse integrated equations in x
direction on a region r, we integrate Equation (1) for all y ∈ [bm−1, bm], obtaining

µi
d

dx
Ψyr(x,Ωi) + σtrΨyr(x,Ωi) = Qyr(x,Ωi) + σsr

M/2∑
k=1

wk
[
Ψyr(x,Ωk) + Ψyr(x,Ωk+M/2)

]
, (2)

−µi
d

dx
Ψyr(x,Ωi+M/2)+σtrΨyr(x,Ωi+M/2) = Qyr(x,Ωi+M/2)+σsr

M/2∑
k=1

wk
[
Ψyr(x,Ωk) + Ψyr(x,Ωk+M/2)

]
, (3)

for i = 1, . . . ,M/2, where we defined the integrated angular flux for x-direction

Ψyr(x,Ωi) =
1

αm

∫ bm

bm−1

Ψr(x, y,Ωi)dy, (4)

and source terms as

Qyr(x,Ωi) = Qyr(x)− ηi
αm

[Ψr(x, br,Ωi)−Ψr(x, br−1,Ωi)] , (5)

Qyr(x) =
1

αm

∫ bm

bm−1

Qr(x, y)dy, (6)

where αm = bm − bm−1 and i = 1, . . . ,M .
We proceed similarly to obtain such a system in terms of the variable y. Again, following previous works (Barichello

et al., 2011), we associate indices i = 1, . . . ,M/2 to directions with coordinate ηi > 0 and indices i = M/2 + 1, . . . ,M
to directions with coordinates ηi < 0. Integrating Equation (1) for every x ∈ [am−1, am], we obtain

ηi
d

dy
Ψxr(y,Ωi) + σtrΨyr(y,Ωi) = Qxr(y,Ωi) + σsr

M/2∑
k=1

wk
[
Ψxr(y,Ωk) + Ψxr(y,Ωk+M/2)

]
, (7)

−ηi
d

dy
Ψxr(y,Ωi+M/2)+σtrΨxr(y,Ωi+M/2) = Qxr(y,Ωi+M/2)+σsr

M/2∑
k=1

wk
[
Ψxr(y,Ωk) + Ψxr(y,Ωk+M/2)

]
, (8)

for i = 1, . . . ,M/2. In these equations, we define the integrated angular flux for y-direction

Ψxr(y,Ωi) =
1

βm

∫ am

am−1

Ψr(x, y,Ωi)dx, (9)

and the source terms

Qxr(y,Ωi) = Qxr(y)− µi
βm

[Ψr(ar, y,Ωi)−Ψr(ar−1, y,Ωi)] , (10)

Qxr(y) =
1

βm

∫ am

am−1

Qr(x, y)dx, (11)

where i = 1, . . . ,M and βm = am − am−1.
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We note that in Equations (6) and (11), the angular fluxes on the contours of each region, resulting from the integration
of Equation (1), were incorporated to the source term. Some of these terms can be obtained from the known boundary
conditions of the problem. For the unknown variables as exiting angular fluxes, auxiliary equations have to be introduced;
what is usual in nodal schemes. In what follows, we propose different approximations for those unknowns which are
incorporated to the non-homogeneous source term. Such approximations as well as the boundary conditions have to be
defined in order to derive particular solutions as will be discussed later on.

2.1 Solution by the ADO method in a medium r

The transverse integrated one-dimensional equations defined in the previous section, are resolved in this section using
ADO method. Thus, for a region r, we propose solutions of the homogeneous problem, for i = 1, ...,M , as

ΨH
yr(x,Ωi) = Φyr(νr,Ωi)e

−x/νr . (12)

Substituting Equation (12) in Equations (2) and (3), we obtain

−µi
νr

Φyr(νr,Ωi) + σtrΦyr(νr,Ωi) = σsr

M/2∑
k=1

wk
[
Φyr(νr,Ωk) + Φyr(νr,Ωk+M/2)

]
, (13)

µi
νr

Φyr(νr,Ωi+M/2) + σtrΦyr(νr,Ωi+M/2) = σsr

M/2∑
k=1

wk
[
Φyr(νr,Ωk) + Φyr(νr,Ωk+M/2)

]
, (14)

for i = 1, ...,M/2. We obtain, manipulating the equations above and from the definitions

Uyr(νr,Ωi) = Φyr(νr,Ωi) + Φyr(νr,Ωi+M/2) (15)

and

Vyr(νr,Ωi) = Φyr(νr,Ωi)− Φyr(νr,Ωi+M/2) (16)

the eigenvalue problem

[Dyr −Ayr] Uyr = λyrUyr, (17)

with

λyr =
1

ν2r
, (18)

where Dyr and Ayr are M/2×M/2 matrices defined as

Dyr = diag

[[
σtr
µ1

]2
, ...,

[
σtr
µM/2

]2]
(19)

and the elements of Ayr are given by

Ayr(i, j) =
σsrσtrwj

2µ2
i

, (20)

for i = 1, ...,M/2 and j = 1, ...,M/2. From the solution of the eigenvalue problem, Equation (17), we obtain λjr, Ujr
for j = 1, ...,M/2, the separation constants follows from Equation(18). Knowing that the separation constants occur in
pair, the homogeneous solution on a region r may be written as

ΨH
yr(x,Ωi) =

M/2∑
j=1

[
Aj,rΦyr(νjr,Ωi)e

−(x−am−1)/νjr +Aj+M/2,rΦyr(νjr,Ωi+M/2)e−(am−x)/νjr
]
, (21)

ΨH
yr(x,Ωi+M/2) =

M/2∑
j=1

[
Aj,rΦyr(νjr,Ωi+M/2)e−(x−ar−1)/νjr +Aj+M/2,rΦyr(νjr,Ωi)e

−(ar−x)/νjr
]

(22)

for i = 1, ...,M/2, x ∈ [am−1, am], where Aj,r and Aj+M/2,r represent the coefficients of the solution relative to region
r.

We proceed similarly to obtain the eigenvalue problem,separation constants and the solution in the y-direction in the
same region:

ΨH
xr(y,Ωi) =

M/2∑
j=1

[
Bj,rΦxr(γjr,Ωi)e

−(y−bm−1)/γjr +Bj+M/2,rΦxr(γjr,Ωi+M/2)e−(bm−y)/γjr
]
, (23)
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ΨH
xr(y,Ωi+M/2) =

M/2∑
j=1

[
Bj,rΦxr(γjr,Ωi+M/2)e−(y−br−1)/γjr +Bj+M/2,rΦxr(γjr,Ωi)e

−(br−y)/γjr
]
, (24)

for i = 1, ...,M/2, y ∈ [bm−1, bm]. Here Bj,r and Bj+M/2,r represent the coefficients of the solution relative the region
and the separation constants γjr are obtained from the solution of the following eigenvalue problem, similar to Equation
(17),

[Dxr −Axr] Uxr = λxrUxr (25)

with λxr = 1/γ2r . The matrices Dxr and Axr of order M/2, are defined as

Dxr = diag

[[
σtr
η1

]2
, ...,

[
σtr
ηM/2

]2]
(26)

Axr(i, j) =
σsrσtrwj

2η2i
, (27)

for i = 1, ...,M/2, j = 1, ...,M/2 and r = 1, . . . , R. It is important to note that from a set M directions, we come to a
eigenvalue problem M/2.

2.2 General Solution

As in Equations (2), (3), (7) and (8) appears the inhomogeneous source term, one needs to define a particular solution
to the problem. Moreover, these sources terms depend on the angular fluxes on the contours which are not known in all
directions. Thus we need to define auxiliary equations.

Differently of previous works, we will use three different approaches to approximate the unknown flows in the con-
tours: approaches by constant, linear and exponential approximations. For this, consider the following equations

Ψr(x, bm,Ωi) = ϕ1Dm,r,i (28a)
Ψr(x, bm−1,Ωi) = ϕ1Dm−1,r,i, (28b)

Ψr(am, y,Ωi) = ϕ2Cm,r,i, (28c)
Ψr(am−1, y,Ωi) = ϕ2Cm−1,r,i, (28d)

such that, for constant approximation let us consider ϕ1 = ϕ2 = 1, linear ϕ1 = x and ϕ2 = y and exponential
ϕ1 = e−(am−x)/νr,max and ϕ2 = e−(bm−y)/γr,max . With i = 1, ...,M and r = 1, ..., R, where1 m indicating the number
of divisions of the domain, γr,max and νr,max are the separation constants of each region obtained from the eigenvalue
problem solution.

At this point, we defined the presence of a fixed isotropic source of neutrons in Region I ,

Q(x, y) =

{
1, to x ∈ [0, a1] e y ∈ [0, b1]
0, otherwise, (29)

in the integrate form

Qyr(x) = Qxr(y) =

{
1, to r = 1
0, elsewhere. (30)

From Equation (30) and Equations (28), we can rewrite the term source of integrated problems y and x, Equations (5)
and (10), respectively, the form

Qyr(x,Ωi) =


1− ηi

bm − bm−1
[Dm,r,i −Dm−1,r,i] ϕ1, to r = 1

− ηi
bm − bm−1

[Dm,r,i −Dm−1,r,i] ϕ1, elsewhere
(31)

and

Qxr(y,Ωi) =


1− µi

am − am−1
[Cm,r,i − Cm−1,r,i] ϕ2, to r = 1

− µi
am − am−1

[Cm,r,i − Cm−1,r,i] ϕ2, elsewhere,
(32)

where i = 1, . . . ,M , r = 1, . . . , R. Since we have defined the terms of the sources integrated problem in y and x, the
next step is the deduction of the particular solution to be used.
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2.2.1 Particular Solution

In this work, we consider Green’s functions to derive following the same development presented in (Barichello et al.,
2000; Prolo Filho, 2011). In this way, we define the particular solution for integrated problem y with

Ψp
yr(x,Ωi) =

M/2∑
j=1

{Aj,r(x)Φyr(νjr,Ωi) +Aj+M/2,r(x)Φyr(νjr,Ωi+M/2)}, (33)

Ψp
yr(x,Ωi+M/2) =

M/2∑
j=1

{Aj,r(x)Φyr(νjr,Ωi+M/2) +Aj+M/2,r(x)Φyr(νjr,Ωi)}, (34)

where

Aj,r(x) =

∫ x

am−1

{
M∑
α=1

Qyr(τ,Ωα)Aj,r,α

}
e

−(x−τ)
νjr dτ, (35)

Aj+M/2,r(x) = −
∫ am

x

{
M∑
α=1

Qyr(τ,Ωα)Aj+M/2,r,α

}
e

−(τ−x)
νjr dτ, (36)

with i = 1, ...,M/2, j = 1, ...,M/2, r = 1, ..., R and α = 1, ...,M , and Aj,r,α, Aj+M/2,r,α represent coefficients and
are numerically determined from the solution of a linear system as defined in (Prolo Filho, 2011).

The particular solution to the problem integrated in x, is defined as follows

Ψp
xr(y,Ωi) =

M/2∑
j=1

{Bj,r(y)Φxr(γjr,Ωi) +Bj+M/2,r(y)Φxr(γjr,Ωi+M/2)}, (37)

Ψp
xr(y,Ωi+M/2) =

M/2∑
j=1

{Bj,r(y)Φxr(γjr,Ωi+M/2) +Bj+M/2,r(y)Φxr(γjr,Ωi)}, (38)

with

Bj,r(y) =

∫ y

bm−1

{
M∑
α=1

Qxr(τ,Ωα)Bj,r,α

}
e

−(y−τ)
γjr dτ (39)

and

Bj+M/2,r(y) = −
∫ bm

y

{
M∑
α=1

Qxr(τ,Ωα)Bj+M/2,r,α

}
e

−(τ−y)
γjr dτ, (40)

where coefficients Bj,r,α and Bj+M/2,r,α are numerically determined from the solution of a linear system.
Once defined expressions for the homogeneous and particular solutions, the general solution of integrated problems

in y and x for a region r, respectively, are given by

Ψyr(x,Ωi) = Ψh
yr(x,Ωi) + Ψp

yr(x,Ωi) (41)

and

Ψxr(y,Ωi) = Ψh
xr(y,Ωi) + Ψp

xr(y,Ωi), (42)

for i = 1, . . . ,M and r = 1, . . . , R.
To establish the general solution the arbitrary coefficients have to be determined and so it is necessary to solve a linear

system, which is constructed using known boundary and interfaces conditions.
The boundary conditions considered here are vacuum on the top and right edges (see Figure (2)),

Ψr(x, b,Ωi) = 0, i = M/4 + 1, . . . ,M/2, i = 3M/4 + 1, . . . ,M, (43)

Ψr(a, y,Ωi) = 0, i = M/4 + 1, . . . ,M/2, i = 3M/4 + 1, . . . ,M, (44)

and reflective on the bottom and left edges (see Figure (2)),

Ψr(x, 0,Ωi) = Ψr(x, 0,Ωi+M/4) i = 1, . . . ,M/4, i = M/2 + 1, . . . , 3M/4, (45)
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Ψr(0, y,Ωi) = Ψr(0, y,Ωi+M/4) i = 1, . . . ,M/4, i = M/2 + 1, . . . , 3M/4. (46)

In their integrated form

Ψxr(b,Ωi) = 0, i = M/4 + 1, . . . ,M/2, i = 3M/4 + 1, . . . ,M, (47)

Ψyr(a,Ωi) = 0, i = M/4 + 1, . . . ,M/2, i = 3M/4 + 1, . . . ,M, (48)

and

Ψxr(0,Ωi) = Ψxr(0,Ωi+M/4) i = 1, . . . ,M/4, i = M/2 + 1, . . . , 3M/4, (49)

Ψyr(0,Ωi) = Ψyr(0,Ωi+M/4) i = 1, . . . ,M/4, i = M/2 + 1, . . . , 3M/4. (50)

Figura 2: The domain and its regions.

3. NUMERICAL RESULTS

We evaluate the region averaged scalar flux, in region r, by the following equations

φr =
1

4(am − am−1)

∫ am

am−1

M/2∑
k=1

wk[Ψyr(x,Ωk) + Ψyr(x,Ωk+M/2)]dx (51)

or

φr =
1

4(bm − bm−1)

∫ bm

bm−1

M/2∑
k=1

wk[Ψxr(y,Ωk) + Ψxr(y,Ωk+M/2)]dy, (52)

where r = 1, ..., R. For the cases considered in this work both returned the same values.
We consider in this work the homogeneous problem with isotropic scattering defined in a rectangular domain a = b =

1.0 cm divided into four regions (r = 4), with fixed isotropic sourceQ(x, y) = 1.0 located in the region [0, 0.5]× [0, 0.5],
as shown Figure (2). The total cross section is σt = 1.0 cm−1 and the scattering cross section is σs = 0.3 cm−1 in for all
four regions.

The averaged scalars flux obtained with this formulation are represented in the Tables 1-3. Three approaches were used
to approximate the unknown fluxes on the contours, constant, linear and exponential approximations, denoted respectively
by: ADO-C, ADO-L and ADO-E. The results are compared with those obtained by AHOT code (Azmy, 2014) based on
constant and linear approximations, denoted respectively by: AHOT-C and AHOT-L.

Fixing a number of directions, and analyzing the results obtained for different meshes, we observe up to two significant
digits in agreement for the average scalar fluxes, in all regions and for the two quadrature schemes when comparing ADO
and AHOT versions.

On the other hand, taking an specific mesh and increasing number of directions by octant, we note a two-digits
agreement in the case of the LQN scheme. However for the QR quadrature, this convergence achieve up to four digits.

Now, when the comparison is performed between the two methods, considering results obtained with the mesh 4×4, it
obtained up to three significant digits, between AHOT-C and ADO-C approaches. For the other approaches, it is observed
a reduction of one significant digit. This is observed in all regions and for both quadrature schemes.

Based on this analysis, it is observed that the three approaches proposed in this work, to approximate the unknown
fluxes in the contours, ADO-C, ADO-L and ADO-E, have produced satisfactory results in the sense of following the same
behavior of the AHOT method. It is also observed that, from a larger division of the domain, the number of significant
digits between the average scalar fluxes of both methods begins to increase as would be expected for averaged quantities.
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We also verify the influence of using different quadrature schemes, in the sense that with the quadrature QR, we can get
more digits of agreement among the numerical results as they increased the quadrature order.

Tabela 1: Averaged scalar flux - Region I, σs = 0, 3
Symmetrical level Quadrature LQN

Da AHOT (Azmy, 2014) AHOT (Azmy, 2014) ADO ADO ADO
Constant Linear Constant Linear Exponential

2× 2 4× 4 50× 50 2× 2 4× 4 50× 50 2× 2 4× 4 2× 2 4× 4 2× 2 4× 4
1 0.4562 0.4677 0.4716 0.4768 0.4791 0.4727 0.4627 0.4697 0.5088 0.4806 0.4792 0.4736
3 0.4921 0.4979 0.5004 0.4993 0.5019 0.5007 0.4996 0.5001 0.5494 0.5110 0.5123 0.5031
6 0.4975 0.5029 0.5054 0.5044 0.5067 0.5057 0.5050 0.5051 0.5542 0.5150 0.5171 0.5078
10 0.5004 0.5059 0.5084 0.5072 0.5093 0.5086 0.5078 0.5082 0.5559 0.5172 0.5194 0.5108
21 0.5025 0.5080 0.5104 0.5092 0.5112 0.5106 0.5096 0.5103 0.5560 0.5186 0.5207 0.5128

Quadrature QR
Da AHOT (Azmy, 2014) AHOT (Azmy, 2014) ADO ADO ADO

Constant Linear Constant Linear Exponential
2× 2 4× 4 50× 50 2× 2 4× 4 50× 50 2× 2 4× 4 2× 2 4× 4 2× 2 4× 4

2 0.4825 0.4857 0.4878 0.4856 0.4872 0.4877 0.4894 0.4878 0.5409 0.4978 0.5043 0.4910
8 0.5055 0.5108 0.5129 0.5114 0.5132 0.5130 0.5120 0.5130 0.5543 0.5210 0.5228 0.5155
18 0.5059 0.5111 0.5133 0.5122 0.5139 0.5135 0.5123 0.5132 0.5546 0.5216 0.5227 0.5157
32 0.5058 0.5110 0.5132 0.5122 0.5139 0.5134 0.5121 0.5131 0.5545 0.5213 0.5224 0.5155
a Directions by octant

Tabela 2: Averaged scalar flux - Regions II e III, σs = 0, 3
Symmetrical level Quadrature LQN

Da AHOT (Azmy, 2014) AHOT (Azmy, 2014) ADO ADO ADO
Constant Linear Constant Linear Exponential

2× 2 4× 4 50× 50 2× 2 4× 4 50× 50 2× 2 4× 4 2× 2 4× 4 2× 2 4× 4
1 0.1687 0.1607 0.1579 0.1577 0.1553 0.1574 0.1685 0.1603 0.1428 0.1544 0.1640 0.1593
3 0.1717 0.1662 0.1640 0.1612 0.1612 0.1637 0.1716 0.1660 0.1419 0.1610 0.1667 0.1649
6 0.1708 0.1654 0.1637 0.1615 0.1614 0.1634 0.1708 0.1651 0.1415 0.1616 0.1659 0.1642
10 0.1701 0.1648 0.1635 0.1614 0.1613 0.1632 0.1700 0.1645 0.1418 0.1617 0.1654 0.1636
21 0.1694 0.1644 0.1633 0.1613 0.1613 0.1631 0.1694 0.1641 0.1427 0.1616 0.1651 0.1633

Quadrature QR
Da AHOT (Azmy, 2014) AHOT (Azmy, 2014) ADO ADO ADO

Constant Linear Constant Linear Exponential
2× 2 4× 4 50× 50 2× 2 4× 4 50× 50 2× 2 4× 4 2× 2 4× 4 2× 2 4× 4

2 0.1734 0.1687 0.1671 0.1651 0.1655 0.1669 0.1736 0.1685 0.1433 0.1656 0.1674 0.1673
8 0.1699 0.1657 0.1645 0.1623 0.1624 0.1642 0.1699 0.1655 0.1459 0.1621 0.1658 0.1646
18 0.1688 0.1643 0.1632 0.1612 0.1612 0.1629 0.1687 0.1640 0.1445 0.1609 0.1648 0.1632
32 0.1688 0.1643 0.1631 0.1612 0.1612 0.1628 0.1687 0.1640 0.1445 0.1610 0.1649 0.1632
a Directions by octant

Tabela 3: Averaged scalar flux - Region IV, σs = 0, 3
Symmetrical level Quadrature LQN

Da AHOT (Azmy, 2014) AHOT (Azmy, 2014) ADO ADO ADO
Constant Linear Constant Linear Exponential

2× 2 4× 4 50× 50 2× 2 4× 4 50× 50 2× 2 4× 4 2× 2 4× 4 2× 2 4× 4
1 0.1299 0.1390 0.1417 0.1176 0.1332 0.1414 0.1312 0.1396 0.1773 0.1493 0.1462 0.1432
3 0.1003 0.1014 0.1010 0.0834 0.0937 0.1005 0.1004 0.1014 0.1358 0.1033 0.1081 0.1026
6 0.0918 0.0932 0.0922 0.0780 0.0869 0.0920 0.0916 0.0932 0.1221 0.0927 0.0979 0.0939
10 0.0882 0.0898 0.0887 0.0750 0.0835 0.0885 0.0879 0.0897 0.1159 0.0889 0.0936 0.0903
21 0.0856 0.0869 0.0863 0.0727 0.0808 0.0859 0.0853 0.0867 0.1116 0.0867 0.0906 0.0874

Quadrature QR
Da AHOT (Azmy, 2014) AHOT (Azmy, 2014) ADO ADO ADO

Constant Linear Constant Linear Exponential
2× 2 4× 4 50× 50 2× 2 4× 4 50× 50 2× 2 4× 4 2× 2 4× 4 2× 2 4× 4

2 0.0840 0.0827 0.0804 0.0684 0.0754 0.0802 0.0834 0.0825 0.1102 0.0785 0.0898 0.0827
8 0.0830 0.0838 0.0837 0.0691 0.0769 0.0832 0.0828 0.0836 0.1084 0.0858 0.0883 0.0845
18 0.0828 0.0842 0.0833 0.0695 0.0774 0.0830 0.0826 0.0841 0.1086 0.0850 0.0880 0.0849
32 0.0890 0.0843 0.0837 0.0698 0.0777 0.0833 0.0828 0.0841 0.1087 0.0851 0.0881 0.0849
a Directions by octant

4. CONCLUDING REMARKS

In this work a two-dimensional fixed source neutron transport problem for homogeneous medium with isotropic
scattering, was solved using ADO method in combination with nodal schemes. It has been found that the use of the
ADO method is a good alternative for these problems, since allows the use of different numerical schemes of higher-order
quadrature maintaining an important characteristic of reducing the order of the associated eigenvalue problem.

The focus of this work was to analyze the effect of using different approaches for appromation unknown flows on
the contours. Thus, three different approaches have been proposed: constants, linear and exponential. In the present
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analysis the influence of the quadrature scheme, in particular the use of higher order schemes, on the scalar fluxes was
noted. Better agreement was obtained among the three different ADO approximations in the source region and for more
refined meshes. In general such behavior is similar to what happens to the AHOT versions. The complete set of data just
indicates one to two digits of possible reference results. The use of refined meshes along with the ADO method is under
investigation and it could result in improved analysis. In future works the proposed formulation will be investigated for
the solution of radiative transfer applications.
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