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Abstract. Piezoelectric materials have been extensively studied in recent years for the development of electromechanical
harvesting devices; however, much of the research that is available in open literature focuses on increasing mechanical
and electrical performance, increasing efficiency, consequently harvesting. The conversion of mechanical energy to elec-
tric energy is provided by the electromechanical coupling between flexible structure and piezoceramic element. There
are basically two types of strategies adopted when integrating piezoelectric sensors and actuators into flexible structures:
bonding to the host structure surfaces or incorporation into a laminated structure of thin patches or layers of piezoelec-
tric ceramics. In both cases, the interface between the host structure and the piezoelectric device plays a decisive role in
terms of mechanical stress and voltage transfer mechanisms. This work presents a study on the influence of parametric
uncertainties on the thickness properties and Young’s modulus of adhesive bond strength, based on the expected statistical
properties of variables, such as expected nominal value, dispersion and positivity.
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1. INTRODUCTION

In several fields of engineering, analyzes are carried out in search of a project that presents high performance and,
at the same time, reducing mass. Thus, the use of piezoelectric for the energy harvesting (through the direct effect),
and vibration attenuation has a wide application as sensors and actuators, still highlighting the high energy efficient
conversion between displacement and electric charge. That is why surface-mounted piezoelectric sensors and actuators
are also known as extension or extension-bending sensors and actuators and were widely used an active (Sunar and Rao,
1999), passive (Reza Moheimani, 2003) and hybrid active-passive (Tang, Liu and Wang,2000; Trindade and Benjeddou,
2002; Santos and Trindade, 2011) control applications.

The performance of piezoelectric patches for these types of applications are very much dependent on the adequate tun-
ing between resonant, circuit and operation frequencies and on the effective electromechanical coupling between patches
and host structure. Therefore, variabilities and/or uncertainties on material properties, boundary conditions and bonding
effectiveness may have a major effect on reducing the expected or predicted performance of such devices (Santos and
Trindade, 2012; Godoy and Trindade, 2012).

Still, most of the bonds made between piezoelectric inserts utilize two-part epoxy adhesives (resin and reinforcement),
which must be cured at the ideal temperature and pressure to achieve the desired stiffness configuration, so that the curing
and mixing process is very likely to be subject to uncertainties (Santos and Trindade, 2016).

Hence, the objective of the work is to present an analysis of the effect of uncertainties of bounding layer stiffness on
the performance of piezoelectric sensors and actuators with application to passive shunted damping and energy harvesting.
For that, the bounding layer Young Modulus is represented by a stochastic parameter and Monte Carlo simulations are
performed to evaluate mean and confidence intervals of the damping and energy harvesting performance.

2. FINITE ELEMENT MODEL OF PIEZOELECTRIC BEAMS

For the study of the stiffness of the layer was adopted the classic sandwich model (piezoceramic - bonding layer -
host), as shown in figure 1. This allows the shear effect that will be responsible for one of the displacement losses of the
layers. Thus, Bernoulli-Euler theory is retained for the outer layers, while the bonding layer (resin) is assumed to behave
as a Timoshenko beam.

For the analysis of the output mechanical the resistance and inductance were optimization through on genetic algorithm
in function of the a tension applied. Were is applied only in first mode of the vibration.
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Figure 1: Schematic representation of reduction of transmissibility due to bonding layer.

With the applied theories of the Bernoulli and Timoshenko can be developed the equation of movement for the struc-
ture, this form the structure-patches-circuits coupled equations of motion can be written as
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where u and qp are the global mechanical displacement and electric charge dofs and M, Km, K̄me, K̄ are the mass and
mechanical, piezoelectric and dielectric stiffness matrices and F is the mechanical force vector. Lc and Rc are diagonal
matrices containing the inductance and resistance optimized and Vc is the vector of electric voltage applied to the electric
shunt circuits, but how in this work is studded only the output mechanical the value of the vector of electric voltage is
equal zero.

3. VIBRATION CONTROL ANALYSIS

For vibration control analysis, the proposed model (Santos and Trindade 2011) is used to evaluate the mobility (veloc-
ity/force) frequency response function of the base structure. The resistive (R) or resonant (RL) shunt circuit affects both
the passive and active-passive (hybrid) control performance.In this way, it became necessary to use the circuit that will
dissipate the energy or to storage for later use.

3.1 Evaluation of mechanical output under mechanical excitation

How this work analyze a purely mechanical excitation, such as Vc = 0 and F = bf e jωt , the amplitude of a displacement
output y = cyu can be written as y = Gp (ω) f, where the FRF Gp(ω) is

Gp(ω) = Cy{ω2M + JωC+Km−Kme(ω
2Lc + JωRc +ke)

−1Kme}−1 (2)

Analyzing the equation 2 it can be noted that the resistance and the inductance have the capacity to change the rigidity
properties of the piezoelectric material, in this way it will be applied to the case types i) open-circuit when Rc tending to
infinity and ii) short-circuit when Lc = Rc = 0. For the open circuit it has

Goc
p (ω) = Cy{ω2M + JωC+Km}−1b (3)

To the closed circuit

Gsc
p (ω) = Cy{ω2M + JωC+Km−KmeKe}−1b (4)

You may note that no structural modification is observed in the open circuit box, whereas in the case of a short circuit,
the rigidity of the piezoelectric patches is reduced.

3.2 Vibration control using piezoelectric actuators ans state feedback

This way is necessary to rewrite the motion equations in the form of state space, containing the displacements and
modal velocities of the piezoelectric patches and their derivatives of time.

ż = Âz+ B̂Vc + B̂ f f , y = Ĉyz, (5)
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The modal displacements are such that u =φα and, for mass normalized vibration modes, Ω 2 =φtKmφ and Λ =
φtCφ. Ω is a diagonal matrix which elements are the undamped natural frequencies of the structure with piezoelectric
patches in open-circuit. Ω 2

e = L−1
c K̄e and Λe = L−1

c Rc are both diagonal matrices which elements stand, respectively,
for the squared natural frequencies of the electric circuits and the ratio between the resistances and inductances. The
electromechanical coupling stiffness matrix projected in the undamped modal basis is defined as Kp =φ

tK̄me. Input b
and output cy distribution vectors are also defined, with modal projections bφ =φtb and cφ = cyφ, and f is a vector of
the amplitudes of each mechanical force applied to the structure (Santos and Trindade 2016).

A linear state feedback for the applied voltages Vc is assumed such that Vc =−gz =−gdmα−gdeqp−gvmα̇−gveq̇p,
where g is a matrix of control gains for each state variable. Therefore, the state space equation (5) becomes

ż = (Â− B̂g)z+ B̂ f f , y = Ĉyz. (7)

For a single-input mechanical excitation f , the closed-loop or controlled amplitude of a single displacement output y
can be written such that ỹ = Gh(ω) f̃ , where the FRF Gh(ω) is

Gh(ω) = Ĉy(jωI− Â+ B̂g)−1B̂ f , (8)

which can also be derived from the second order equations of motion projected into the undamped modal basis leading to

Gh(ω) = cφ
{
−ω2I+ jω(Λ+KpD−1

cc gvm)+ [Ω 2 +KpD−1
cc (gdm−Kt

p)]
}−1bφ, (9)

where the closed-loop dynamic stiffness of the electric circuit Dcc is

Dcc =−ω2Lc + jω(Rc +gve)+(K̄e +gde). (10)

The control gain g can be calculated using the standard optimal LQR control theory applied to a single-input/single-
output case, that is with only one active-passive patch-circuit pair for the control to minimize the vibration amplitude at
one specific location of the structure, such that the following objective function is minimized

J =
1
2

∫
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c
)

dt, (11)

where ẏ is the velocity at one location of interest and Vc is the control voltage applied to the active-passive shunt circuit in
all cases following an iterative routine proposed in (Trindade, Benjeddou and Ohayon, 1999).

4. STOCHASTIC MODELING OF BONDING STIFFNESS FOR UNCERTAINTY QUANTIFICATION

Became an approach for analyzing random uncertainties for the bonding stiffness main parameter, that is the effective
Young’s modulus E of the adhesive. This is done considering the Young’s modulus as a stochastic variable, respecting a
given probability density function. Random realizations of the stochastic variable E are then generated. An appropriate
probabilistic model for the stochastic variable is constructed accounting for the available information only, which is the
following: (1) the support of the probability density function is ]0,+∞[; (2) the mean values are such that E[X ] =X ; and (3)
zero is a repulsive value for the positive-valued random variables which is accounted for by the condition E[ln(X)] = cX
with |cX < +∞. Therefore, the Maximum Entropy Principle yields the following Gamma probability density functions
for X (Soize, 2001; Cataldo et al., 2009; Ritto et al., 2010).

The probability density function for the adhesive Young’s modulus is not known. Moreover, it is not possible to
characterize its probability density function through of the measure physical, since the bonding stiffness depends not only
on a manual mixture of two components (resin and hardener) but also on of the . Therefore, the effective bonding stiffness
would have to be characterized after assembling.

Nevertheless, it is expected that a mean (or nominal) value could be estimated and, also, that it should be positive so a
reasonable stochastic model can be constructed from a Gamma probability density function (pdf), present in equation 12.
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in which δE = σE/Ē is the relative dispersion of stochastic bonding layer Young’s modulus Eb and σE is its standard
deviation. The Gamma function is defined as Γ(x) =

∫
∞

0 tx−1e−tdt.
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For comparative study, is necessary the use other density function distribution possessing mean of value upward of
2.5 Gpa. In this way probability density function considered for the adhesive Young’s modulus is the Truncated Gaussian
pdf. The Gaussian pdf, also known as Normal pdf, is given by

pE(E) = I]−∞,+∞[(E)
1

σE
√

2π
e
− (E−Ē)2

2σ2
E (13)

Notice that the support of the Gaussian pdf is ]−∞,+∞[ and, thus, it may lead to negative values for the adhesive
Young’s modulus. Therefore, is be necessary to truncate the pdf in order to admit only positive values, considering
Ē = 2.5 GPa, δE = 94%, until all are within the range of acceptable. Figure 2a and Figure 2b shows the histograms of the
samples generated with these parameters.

(a) Gamma Distribution (b) Normal Distribution
Figure 2: Histogram of samples using 5000 realizations

The histogram shown in Figure 2b follows very closely the expected behavior of a Gamma pdf with only positive
values. However, it was observed that for this large value of relative dispersion, there is a concentration of realizations
below 2 GPa.

The statistical analyses of the FRF amplitudes were performed using their 5000 realizations at each frequency to
calculate the corresponding mean values and 95% confidence intervals. The 95% confidence intervals were evaluated
using the 2.5% and 97.5% percentiles of the realizations of FRF amplitudes at each frequency. Figure ?? summarizes the
simulation procedure.

Figure 3: schematic representation of the computational procedure to obtain the confidence intervals for the frequency
response functions Gp(ω) and Gh(ω)

5. UNCERTAINTY QUANTIFICATION RESULTS

For analyzing random uncertainties Monte Carlo simulation were performed and the realizations of the frequency
response functions, were used to evaluate their mean values and 95% confidence intervals, using 2.5% and 97.5% per-
centiles of the realizations. The effect of uncertainties about the efficiency were analyzed in function of the frequency
response, where this case were applied only for the first mode of vibration. This where applied in the two distributions
proposed.
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5.1 Definition of the structure configuration

The structure is composed of a fixed beam of the aluminium of dimension 220 mm in length and width of 2 mm,
the piezoelectric has a thick of 0.5 mm and is fixed by a layer of glue of 1 mm, as we can see in the figure 4. The
extension piezoceramics are made of PZT-5H material whose properties are: CD11 = 97.767 GPa, CD33 = 119.71 GPa,
CD55 = 42.217 GPa, ρ= 7500 kg m3, piezoelectric coupling constants h31 = 1.3520x109N.C1 and h15 = 1.1288x109 N.C1,
and dielectric constants β33 = 57.830x106 m F1 and β11 = 66.267x106 m.F1 (Santos and Trindade, 2011).

For the Aluminum beam using a two-part Epoxy bounding layer. Its material properties were considered to be deter-
ministic: density 1160 kg m−3, nominal value of Young Modulus 2.5 GPa and Poisson ration equal to 0.3. The resistance
and inductance were tuned to the first resonance frequency, using an optimization algorithm, leading to Rc = 13.299 KΩ

and Lc = 153.4063 H. The purely passive action is obtained by eliminating the voltage source. For the general case, the
inductance and resistance not only modify the dynamic stiffness of the structure, leading to damping and/or absorption,
but also affects the harvesting effect. (Santos and Trindade, 2016).

Figure 4: Representation of cantilever beam with bonded extension piezoceramic patch.

5.2 Gamma Probability Density Function

The Figure 5, can be observed the first mode from configuration presented in Figure 4 using the p.d. f Gamma devel-
oped in Figure 2a. For this configuration, the Figure 5 shows the mean and 95 % confidence interval for the frequency
response of the shunted cantilever beam subjected to uncertainties of bonding layer stiffness compared to the short-circuit
condition (without passive control).The interval of confidence presented an alteration on the resonance, making the peak
of resonance displaced to the left, this represent more values lower 2.5 GPa in the Gamma probability density function.
May notice that the nominal model indicates a passive reduction in the vibration amplitude of 21 dB (considering the
difference between peak responses for SC and RL), while when considering the uncertainties is found to be in the range
15 dB for superior or 23 dB for inferior bound.

Figure 5: Mean (dashed) and nominal (solid) values and 95% confidence interval (filled) for the frequency response of
the controlled cantilever beam, as compared to OC and SC condictions (dash-dot), subjeted to uncertainties in E Passive
shunt using Gamma Distribution p.d. f .

5.3 Normal Probability Density Function

The Figure 6, can be observed the first mode from configuration presented in Figure 4 using the p.d. f Normal devel-
oped in Figure 2b. For this configuration, the Figure 6 shows the mean and 95 % confidence interval for the frequency
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response of the shunted cantilever beam subjected to uncertainties of bonding layer stiffness compared to the short-circuit
condition (without passive control). The interval of confidence presented an alteration on the resonance, making the peak
of resonance displaced to the left, this represent more values lower 2.5 GPa in the Normal probability density function.
May notice that the nominal model indicates a passive reduction in the vibration amplitude of 23 dB (considering the
difference between peak responses for SC and RL), while when considering the uncertainties is found to be in the range
18.5 dB for superior or 22 dB for inferior bound.

Figure 6: Mean (dashed) and nominal (solid) values and 95% confidence interval (filled) for the frequency response of
the controlled cantilever beam, as compared to OC and SC condictions (dash-dot), subjeted to uncertainties in E Passive
shunt using Normal Distribution p.d. f .

6. CONCLUSION

An analysis of the effect of uncertainties of the bounding layer stiffness on the piezoelectric vibration control was
performed. In passive (shunted) vibration control, bonding stiffness uncertainties mainly affect the tuning between electric
circuit and piezo-structure, reducing the overall performance. Future works can be performed for new results using
uncertainties on Poisson ratio and thickness of the layers.
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