
thProceedings of ENCIT 2016                                                                                        16  Brazilian Congress of Thermal Sciences and Engineering
thCopyright © 2016 by ABCM                                                                                         November 07-10 , 2016, Vitória, ES, Brazil

Asymptotic and numerical solutions of the Orr-Sommerfeld equation for
surface waves on an inclined plane.

Bruno Pelisson Chimetta, brunopchimetta@gmail.com1

Erick de Moraes Franklin, franklin@fem.unicamp.br2

1University of Campinas - Faculty of Mechanical Engineering - Rua Mendeleyev, 200 - CEP 13083-860 - Campinas - SP
2University of Campinas - Faculty of Mechanical Engineering - Rua Mendeleyev, 200 - CEP 13083-860 - Campinas - SP

Abstract: This work presents an analysis of the initial behavior of free surface liquid flows on inclined planes where, under
some conditions, long-wave instability may appear. These instabilities may evolve to surface-wave, that often appear on
thin liquid films. Such knowledge is useful in industry, once liquid films help to remove the heat from solid surfaces,
and also reduces the friction between high viscosity fluids and pipe walls, by injecting, close to the wall, a less viscous
fluid. The surface-wave instability is governed by the Orr-Sommerfeld equation and their boundary conditions. In this
work, we present a long-wave solution for the Orr-Sommerfeld equation based on asymptotic expansions and a numerical
solution. For the long-wave perturbations, the wave number can be treated as a small parameter, and the form of the
equations suggests that the speed and amplitude of the eigenfunction can be sought as a power series of the wave number,
which we considered until the second order of approximation for the asymptotic solution. The numerical solution was
based on a Galerkin method using Chebyshev polynomials for the discratization, which made it possible to express the
Orr-Sommerfeld equation and their boundary conditions as a generalized eigenvalue problem. Those choices were made
because of the general approach of the Galerkin method, which makes the implementation of the boundary condition of
free surface easier, and the high accuracy of the Chebyshev polynomials. A code was implemented in Matlab to solve
the linear system using a QZ algorithm. The asymptotic and numerical solutions give an approximation for the physical
eigenvalue of the problem. Once in possession of this result it is possible to find the growth rate, the wave speed, the
wavelength and the critical Froude number of the liquid film at the instability threshold. The results are compared with
previously published data.
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1. Introduction.

This work is devoted to present a study about surface waves instabilities in liquid films on an inclined plane. Industrial
applications such as friction reducing effects and reactors cooling process are some examples, therefore a good knowledge
about this problem is central to industrial applications. When dealing with such flows, the appearance of instabilities, in
this case surface waves, must be considered. Depending on the system being used, the presence of these instabilities can
be (or not) desirable. Considering the system of oil transport in an annular flow, the film thickness must be constant,
therefore it is necessary to avoid instability. On the other hand, sometimes we can use instabilities to increase heat and
mass transfer, for example, in a reactor cooling process. This article present a study on some physical aspects of a liquid
film falling down on a inclined plane without heat exchange with the wall, and no surfactants at interface. In the first
section we considered some physical properties of the problem and their pertinent dimensionless groups, then we use the
perturbations in the form of a stream function as done by (Yih, 1963). Considering a linearization of the perturbations in
the Navier-Stokes equation, we have the equation of Orr-Sommerfeld (Orr, 1907; Sommerfeld, 1908). The second section
is devoted to solve the generalized eigenvalue problem, produced by the Orr-Sommerfeld equation together with the flow
boundary conditions, by means of an asymptotic analysis (Kevorkian and Cole, 1981), similar to the approach employed
by (Smith, 1990), who considered the wave number as a small parameter and dealt with the speed and amplitude of the
waves as an expansion in power series of the characteristic wave number. For the numerical solution we implemented a
Galerkin method (Fletcher, 1984) using Chebyshev polynomials for the discretization of the equations (Boyd, 1989). In
this work we performed the analytical expansions up to the second order, we found the growth rate of the instability, the
wave speed, and critical Froude number. At the end we compared the results with the numerical solution for validation.

2. Formulation of the problem.

We consider a film of incompressible Newtonian liquid of thickness h, viscosity µ and density ρ, falling down on a
inclined plane with an angle θ with respect to the horizontal and without presence of a gradient temperature (Fig. 1) . The
interface between the liquid and the gas has a surface tension γ and no surfactants present. The pressure applied by the gas
on the interface is P0. Based on the Navier-Stokes equations and considering the boundary conditions of permanent flow,
non-slip at solid surface, no shear and constant pressure at the liquid-gas interface, we can find a solution corresponding
to a steady parallel flow with a planar interface and parabolic velocity profile:

U(y) = U0(1− y2

h2
) (1)



V (y) = 0 (2)

P (y) = P0 − ρgcos(θ)y (3)

where the velocity of the interface U0 is given by,

U0 =
ρgh2sin(θ)

2µ
(4)

Figura 1: Liquid film falling down on a inclined plane with parabolic velocity profile, planar interface H, where ~n is
parallel to the gradient of H (∇H), and perturbed interfacial position η(x, t) (Chimetta and Franklin, 2015).

The solutions are given in terms of the parameters h, ρ and U0, where the latter is the speed of the fluid at the interface.
The contribution of inertia relative to viscosity, gravity, and surface tension is measured, respectively, by the Reynolds,
Froude, and Weber numbers, defined as:

Re =
ρU0h

µ
, Fr =

U2
0

ghcos(θ)
=
Re tan(θ)

2
, We =

ρU2
0h

γ
(5)

where the Froude number is defined using the gravity component gcos(θ) normal to the flow. When the interface is
perturbed (η(x, t) 6= 0), the velocity profile no longer has a exactly parabolic behaviour. This, combined with inertia,
leads to surface waves instabilities.

2.1 The equation of Orr-Sommerfeld.

The Squire’s theorem (Squire, 1933), sets that the first instability on parallel flow of a Newtonian fluid, is always
two-dimensional. This result remains valid for a flow with interface (Hesla et al., 1986), then we can consider only the
two-dimensional case of the problem. We will use the Navier-Stokes equations and continuity in the form:

∂u

∂x
+
∂v

∂y
= 0 (6)

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
+ρgx (7)

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
+ρgy (8)

The components of velocity can be written as u = U + û, v = v̂, where û = ∂Ψ
∂y , v̂ = −∂Ψ

∂x , and considering only
first order perturbations, we have, in dimensionless form, the equation:(

∂

∂t
+ U

∂

∂x

)
∇2Ψ− ∂2U

∂y2

∂Ψ

∂x
=

1

Re
[∇2(∇2Ψ)] (9)

Consider the normal mode in the dimensionless form Ψ(x, y, t) = Ψ̂(y)eiα(x−ct), where α = kh ∈ R, c = ω
k ∈ C, k

is the wave number, therefore α is the characteristic wave number of the problem, and ω is the frequency. Using Ψ(x, y, t)
in Eq. (9) and making the contraction of notation for D = ∂

∂y , we obtain the Orr-Sommerfeld Equation in dimensionless
form, given by:

(D2 − α2)2Ψ̂(y) = iαRe[(U − c)(D2 − α2)−D2U ]Ψ̂(y) (10)
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2.2 Boundary Conditions.

Here we present the boundary conditions of the problem, which are: wall condition, kinematic condition of the
interface and dynamic condition of the interface. In order to obtain these conditions, the same procedure used in the
previous section is used here. The wall condition is given by:

u = 0 ,y = −h (11)

v = 0 ,y = −h (12)

DΨ̂(−1) = 0 (13)

Ψ̂(−1) = 0 (14)

Figure 1 presents the interface H(x, y, t) and the corresponding vectors. For the two-dimensional problem it is
possible consider, H(x, y, t) = y − η(x, t). The unit vectors normal and tangent to the interface, when linearised,
are given by:

~n = −∂η(x, t)

∂x
~ex + ~ey (15)

~t = ~ex +
∂η(x, t)

∂x
~ey (16)

where η(x, t) and ∂η(x,t)
∂x are the position and inclination of the interface, respectively. The kinematic condition is,

~u · ~n = ~w · ~n em y = η(x, t) (17)

where,

~u · ~n = −u∂η(x, t)

∂x
+ v (18)

~w · ~n =
∂η(x, t)

∂t
(19)

Replacing Eq. (18), Eq. (19) in Eq. (17), using the normal modes of Ψ(x, y, t), η(x, t) = η̂eiα(x−ct), and linearizing
the equation around y = 0,

Ψ̂(0)− (c− 1)η̂ = 0 (20)

The dynamic condition at the interface has two parts. Considering that the surface between liquid and gas has no
surfactants or temperature gradient; the first condition is the continuity of the tangential stress, associated with the viscous
stress of the fluid. The second one is the continuity of the normal stress associated with the surface tension. The stress in
the fluid is given by Σ · ~n, where Σ is the stress tensor, and reducing the effect of air to a purely normal stress −P0~n, the
dynamic conditions will be given by:

~t · (Σ · ~n) = 0 (21)

P1 − P2 = −γ(∇ · ~n)⇒ ~n · (Σ · ~n)− ~n · (−P0~n) = −γ(∇ · ~n) ; y = η(x, t) (22)

where γ is the surface tension. Inserting the normal modes in Eqs. (21) and (22) and linearizing around y = 0, we obtain:

D2Ψ̂(0) + α2Ψ̂(0) + η̂D2U(0) = 0 (23)

−D3Ψ̂(0) + [3α2 − iαRe(c− 1)]DΨ̂(0) + iαRe

[
1

Fr
+

α2

We

]
η̂ = 0 (24)

3. Asymptotic Solution.

This section is devoted to the solutions of the equation of Orr-Sommerfeld, together with the boundary conditions of
the problem, by means of an asymptotic analysis considered by Chimetta and Franklin (2015). To find these solutions we
will expand the eigenfunction Ψ̂(y) and the eigenvalue c in power series of α, from O(1) to O(α2).
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3.1 Solution for O(1).

For a long wave disturbance, the wave number α can be treated as a small parameter. The equations suggest the speed
c and the amplitude Ψ̂ of eigenfunctions can be treated as a power series of α. In order to achieve an approximate solution
we will replace the expansions into the Orr-Sommerfeld equation and the terms of the same order will be collected. The
very same procedure will be applied on the boundary conditions.

At O(1):

D4Ψ̂0(y) = 0 (25)

Ψ̂0(−1) = 0 (26)

DΨ̂0(−1) = 0 (27)

Ψ̂0(0)− (c0 − 1)η̂ = 0 (28)

D3Ψ̂0(0) = 0 (29)

D2Ψ̂0(0)− 2
Ψ̂0(0)

c0 − 1
= 0 (30)

From equations (25) to (30),

Ψ̂0(y) = η̂(y + 1)2; c0 = 2 (31)

where η̂ is the amplitude of deformation of the interface. The eigenvalue c0 is real and independent of wave number;
therefore, all disturbances are propagated with the same speed 2U0, independent of the wave (non-dispersive). Since the
imaginary part of c0 is zero, the growth rate of instability is zero, so there is no instability at O(1).

3.2 Solution for O(α).

At O(α):

D4Ψ̂1(y) = 4iReη̂y (32)

Ψ̂1(−1) = 0 (33)

DΨ̂1(−1) = 0 (34)

Ψ̂1(0) = c1η̂ (35)

D2Ψ̂1(0) = 0 (36)

D3Ψ̂1(0) = −2iReη̂ + iReη̂

(
1

Fr
+

α2

We

)
(37)

With these equations we find:

Ψ̂1(y) = iReη̂

{
y5

30
+

[
−1

3
+

1

6

(
1

Fr
+

α2

We

)]
y3 +

[
5

6
− 1

2

(
1

Fr
+

α2

We

)]
y +

8

15

[
1− 5

8

(
1

Fr
+

α2

We

)]}
(38)

c1 = iRe
8

15

[
1− 5

8

(
1

Fr
+

α2

We

)]
(39)

At O(1) the solution is purely imaginary. We found σ = αci = α2c1i in the form,

σ =
α2Re

3

(
1

Frc
− 1

Fr

)
− Re

3We
α4 where Frc = 5

8 (40)

When Fr < Frc, σ is negative for every α, and the flow of the liquid film is linearly stable. For Fr > Frc,
perturbations of wave number below αc will be amplified. We can find αc by,

σ = 0⇔ α2

[
Re

3

(
1

Frc
− 1

Fr

)
− Re

3We
α2

]
= 0 (41)
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Excluding the case α2 = 0 we have,

α2
c = We

(
1

Frc
− 1

Fr

)
with Frc = 5

8 (42)

Perturbations with wave number α > αc are attenuated due to the combined effect of surface tension and viscosity.
The number Frc = 5

8 is the critical Froude number above which the liquid film is unstable. For a limiting case of Froude
number to the Eq. (42) we have,

lim
Fr→∞

α2
c = lim

Fr→∞

√√√√We

(
1

Frc
− 1

Fr

)
→
√
We

Frc
(43)

where the Eq. (43) it sets that the result of the unstable band should be limited for a Froude number large enough.

3.3 Solution for O(α2).

At O(α2):

D4Ψ̂2(y) = 4η̂ −Re2η̂

{
−3

5
y5 +

[
2

3
− 2

3

(
1

Fr
+

α2

We

)]
y3 +

[
11

3
− 2

(
1

Fr
+

α2

We

)]
y

}
(44)

Ψ̂2(−1) = 0 (45)

DΨ̂2(−1) = 0 (46)

Ψ̂2(0) = η̂c2 (47)

D2Ψ̂2(0) = −η̂ (48)

D3Ψ̂2(0) = 6η̂ +Re2η̂

[
121

30
− 5

2

(
1

Fr
+

α2

We

)]
(49)

And it is possible to obtain,

Ψ̂2(y) =
η̂

6
y4−Re

2η̂

60

{
− 1

84
y9+

1

21

[
1−

(
1

Fr
+
α2

We

)]
y7+

[
11

6
−

(
1

Fr
+
α2

We

)]
y5

}
+
A

6
y3+

B

2
y2+Cy+D(50)

c2 = −2− 128

105
Re2

[
1− 5

8

(
1

Fr
+

α2

We

)]
(51)

where A, B, C and D are, respectively,

A = 6η̂ +Re2η̂

[
121

30
− 5

2

(
1

Fr
+

α2

We

)]
(52)

B = −η̂ (53)

C = −10η̂

3
−Re2η̂

[
625

336
− 209

180

(
1

Fr
+

α2

We

)]
(54)

D = η̂c2 (55)

This correction in c only affects the wave speed, the real part of eigenvalue, therefore, at O(α2), long wavelengths are
weakly dispersive (Benney, 1966).
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4. Numerical Solution.

For the numerical solution we implemented a Galerkin method using Chebyshev polynomials for the discretization, in
particular we use the Chebyshev polynomials of the first kind, known as Tn. Before implement the method it is necessary
transfer the problem domain to the interval [−1; 1], this is necessary in order to use the Chebyshev polynomials once they
are orthogonal in this interval. We use the transformation,

z = 2y + 1; for y ∈ [−1; 0]. (56)

after applying the transformation (56) and rearranging the boundary conditions in order to eliminate the term η̂, we can
discretize Ψ̂(z) with the approximation,

Ψ̂(z) =

N∑
k=0

akTk(z); k ∈ {Z | k ≥ 0} (57)

in this way, it is possible write the Orr-Sommerfeld equation in terms of the inner products required in the Galerkin
method. After this process, we can write the problem as eigenvalue problem in the form,

[A]NxN~a = c[B]NxN~a (58)

where N is the number of Chebyshev polynomials to be used and the matrices A and B can be respectively written as
A = Ar + iAi and B = Br + iBi. To apply the boundary conditions we use the same approximation (57) for z = −1
for wall conditions and z = 1 for the interface conditions, and then replace the last four lines in the system (58) with the
transform boundary conditions. Those choices were made based on the particular aspects of the problem. The Galerkin
method was choose because of the complexity of the boundary conditions at the interface once, in the Galerkin method,
we can use each equation of the boundary conditions as line vectors in the final matrices. The choice of using Chebyshev
polynomials was made because of their high accuracy, and their orthogonal properties, which makes the implementation
easier. A code was written in the MATLAB environment to solve the Eq. (58). We used the function ’eig’ which uses a
Cholesky factorization or a generalized Schur decomposition (QZ algorithm) based on the properties of A and B. If A and
B are symmetric, the standard choice will be the Cholesky factorization, otherwise the software will implement the QZ
algorithm. All codes implemented in this work, using the Galerkin formulation, were made using a number of Chebyshev
polynomials equal 80.

5. Discussion and Results.

As presented in section 3, no instabilities appear at O(1). Since the ratio of amplitudes η̂ and Ψ̂0 are real, the interface
η and the stream function Ψ are in phase. The perturbation velocities, u = ∂Ψ

∂y and v = −∂Ψ
∂x are, respectively, in and

out of phase with the interface. For smaller orders the flow does not manifest any instability for long-wave disturbances,
(Charru, 2011). At O(α), we found the correction of eigenvalue c1 = iRe 8

15 [1− 5
8 ( 1
Fr + α2

We )], which affects the growth
rate of instability. This correction generates as a result a critical Froude number equal to 5

8 , which, from Eq. (5), provides
the critical Reynolds number Rec = 5

4cot(θ); therefore, the same condition discussed at the end of section (3.2) can be
applied for the critical Reynolds number. This results agrees with Benney’s results (Benney, 1966) for the O(α), which is
given by c1 = iRe(Re− 5

4cot(θ)) = iRe2(1− 5
8

1
Fr ). Benney disregarded the contributions of Weber number untilO(α3),

however the same criteria for the onset of instabilities was obtained. The solution for O(α2) is given by Eq. (51) which
affects the phase velocity. The value found by Benney was c2 = −2− 32

63Re(Re−
5
4cot(θ)) = −2− 32

63Re
2(1− 5

8
1
Fr )

which shows a difference of 2.4, approximately, in the multiplicative constant. This difference is due to the contribution
of α2

We terms that are associated with the surface tension.
We have plot the growth rate σ(α) (see Fig. 2), and the stability diagram α(Fr) (see Fig. 5), given by Eq. (40) and

Eq. (42). We use the physical properties µ = 0.001Ns/m2, ρ = 998.2071Kg/m3, g = 10m/s2, γ = 0.07275N/m
for temperature T = 20oC and 0.1 mm thickness, as reference in these plots. For the surface tension γ we use the work
of Vargaftik et al. (1983) as a reference. In Fig. (2) it was used π

8 < θ < π
5.8 in order to obtain the Fr < Frc and

Fr > Frc with the asymptotic solution. Figure 3 was made using the numerical approach, for the same range of θ,
showing that asymptotic and numerical solution matches with high accuracy for the growth rate. Figure 4 was made with
the numerical data and presents the stability diagram with the marginal stability curve (σ = 0, and 0 < θ < π

2.5 ), which
separates the stable and unstable domains. Both domains are represent by lines corresponding to negative and positive
values for the growth rate, the negative (at left and above the zero curve) and positive (at right and below the zero curve)
values correspond to stable and unstable regions respectively. This diagram shows that the width of the unstable band
tends to zero at the threshold Fr = Frc and also that we have different behaviours for the growth rate according with the
range of α. For the interval 0.04 < α < 0.05 we can see that the values for the growth rate present in the lines increase
"faster"compared to other intervals, implying that this range for the wavenumber is more affected by an increment in the
wall slope. Figure 5 shows a comparison between the asymptotic and numerical solutions for the marginal stability curve,
both are in good agreement, specially below Froude number equals 1. However, above this value both lines separate Eq.
(43) stablish that a limit for the wave number should be αc = 0.0705, based on the physical properties, and as we can
see both solutions are in good agreement with this limit, so even for a higher Froude number a small error will be present
between both results.
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Figura 2: Behavior of the growth rate σ(α) for Fr < Frc and Fr > Frc with the asymptotic solution. The dotted line
represents the growth rate for the critical Froude number.
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Figura 3: Behavior of the growth rate σ(α) for Fr < Frc and Fr > Frc with the numerical data. The dotted line
represents the growth rate for the critical Froude number.

6. Conclusion.

The asymptotic analysis is a useful method to provide a good physical sense of the problem. Performing the analysis
at O(1) to O(α) we found the celerity and the growth rate of instability, both in good agreement with Benney (1966).
At the O(α2), our result for c2 differs from Benney’s result by a factor 2.4. This difference is due to the fact that in
our resolution, we consider the contributions of α2

We at O(α2), while Benney only consider the contributions of Weber
number starting from O(α3). With the correction c1 at O(α), it was possible to find the critical Froude number, which
determines a critical condition between the effects of inertia and gravity: when Fr < 5

8 the gravity effect dominates, and
the liquid film is stable, and when Fr > 5

8 the inertial effects dominates the flow and the liquid film become unstable.
In possession of the critical Froude number we developed an expression for the instability curves, as well as the marginal
stability diagram. With the Galerkin method it was possible to validate the asymptotic solution and find others structures
for the growth rate besides the neutral curve (σ = 0) in the instability diagram. This method shows itself as a good
alternative to implement complex boundary conditions in a easier way in order to solve stability problems.
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Figura 5: Comparison between the stability diagram for asymptotic and numerical solution. The continuous line represents
Eq. (42) for the asymptotic solution and the dotted line is the numerical data.
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