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Abstract. This paper presents the implementation of a method, presented in the literature, adapted for partially stalled 

surfaces, based on the classic lifting line formulation, into a nonlinear vortex lattice code utilized in the university, 

with its iterative method also presented in the literature, but not able to get reasonable results after stall. After the 

implementation, the results were compared with experimental data presented in other reports to guarantee the 

reliability of the new method. 
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1. INTRODUCTION 

 

During certain phases of the design process of an aircraft, there is a need for the calculation of the stall 

characteristics of the aerodynamic surfaces. There are many ways to perform this task, from potential flow solvers, 

coupled with viscous corrections, to heavy fluid mechanics codes, solving the more general equations of fluid 

mechanics. Depending on the phase of the aircraft design, it is more desirable a faster method, with sufficiently accurate 

estimations, than more detailed ones. 

One of these faster methods is the vortex-lattice, a potential flow based procedure for calculation of multiple 

aerodynamic surfaces. When coupled with aerodynamic data of the airfoil, it can lead to sufficiently accurate results. 

There are some methods in the literature to perform this coupling, but a considerable number of them are not able to get 

reasonable results when the surface is partially stalled, degrading the estimation of the maximum lift and the analysis of 

the stall progress of the aerodynamic surfaces. 

The vortex-lattice code utilized in many projects in UFMG is called CEA-VLM, originally developed in the work of 

Vargas (2006). It is based on the Wessinger’s method, applying a spanwise distribution of horseshoe vortices. The 

coupling between the potential flow and the section data is based on the method presented by Mukherjee, et al. (2003), 

where the normal vector of the panel is redirected by an angle in the chordwise direction (δ) to match the resulting 

forces.  

The problem is that, as presented by Araújo (2016), the iteration scheme of this method diverges when the local 

angle of attack reaches or passes the stall angle, leading to unreasonable results. To overcome that, the nonlinear 

method presented by Chattot (2004) was implemented in the code, adapting its formulation to the variables of the 

program. The method is based on the classical lifting line equations, changing the local circulation (ΔΓj) to guarantee 

the coupling between local section data and potential flow resulting forces, even when the section is stalled. This new 

method guaranteed the convergence of the local angle of attack during stall analysis and, comparing with experimental 

data provided in the literature (Purser and Spearman, 1951), led to better estimations of the maximum lift coefficient 

and stall angle of the surfaces analyzed. 
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2. REVIEW 

 

This section presents the analysis methods more important to the work, all available in the literature. They are 

divided in Classical Theories, where its most important characteristic is the linearity of the results and the assumption of 

zero viscosity of the flow; and the Nonlinear Methods, which add up some elements to the Classical Theories. In this 

case, the coupling between the potential flow and the section data, containing information about the viscous part of the 

flow (friction drag, pressure drag and stall). 

 

2.1 Classical theories 

 

In the so-called “Classic Aerodynamics”, all the methods are based on the use of singularity flows that meets the 

Laplace’s equation, considering an incompressible fluid and irrotational flow (Anderson, 1984). Because of the linearity 

of the equation, the linear combination of different singularities (that meets some boundary condition) also attends the 

equation. 

All the following methods apply this idea, using vortical flow, or vortex filaments, as the singularity, however, they 

have different approaches to the creation of a boundary condition, for the obtainment of a single solution for the 

combination of singularities. 

 

2.1.1   Prandtl’s lifting line 

 

One of the first methods for analysis of lifting surfaces, where the wing is treated as an infinite distribution of 

spanwise horseshoe vortices, with the bound vortex attached to the ¼ chord line. The method treats each section with a 

global angle of attack (α) and with an induced angle of attack (αi), created by the free vortices of all span sections, as 

shown in Fig.1. 

 

Figure 1. Representation of the distribution of horseshoe vortices (Anderson, 1984) 

 

With the both induced and global angles of attack, one can obtain an effective angle of attack of the section. By 

relating the lift coefficient with the effective angle of attack, using section airfoil data or, in this case, by assuming it is 

linear (below the stall region) and by use of the Kutta-Joukowski’s theorem in Eq. (1), it is obtained a closed equation 

for the intensity distribution of the horseshoe vortices, or, in other words, the circulation distribution, as shown by Eq. 

(2). 
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Where y is the coordinate in the spanwise direction, y0 is the location of the current section in the analysis, α0 is the 

zero-lift angle of attack of the section, c the local chord, ρ∞ and V∞ the freestream density and velocity, b the span of the 

lifting surface and Γ the local circulation. Solving Eq. (1) for the given variables, the circulation distribution can be 

obtained. From that, the forces, such as lift and induced drag, can also be calculated. 

From Eq. (1), it is possible to observe the application of the boundary condition in the method, that is, the 

compatibilization of the local lift force, obtained from the airfoil lift coefficient, and the one calculated from the 

Kutta-Joukowski’s theorem. This is the core of many nonlinear methods, including the ones applied for vortex-lattice 

codes. The Prandtl’s method is linear most because of the assumption of a linear airfoil lift coefficient curve (Anderson, 

1984). 

Moreover, the third term on the right side of Eq. (2) corresponds to the induced velocity generated by the free 

vortices. In the Prandtl’s method, only their contribution is considered, since the control point is located at the lifting 
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line (¼ chord line). Because of that, this technique yields sufficiently accurate results for surfaces with low values of 

sweep angle (Katz and Plotkin, 2001). 

 

2.1.2 Weissinger’s method 

 

Known as Extended Lifting Line, in the Weissinger’s method, as in the Prandtl’s theory, the surfaces are treated as a 

distribution of horseshoe vortices, with the bound vortex also placed at the ¼ chord line. The difference lies in the 

application of the boundary conditions and the control point. This time, the idea is to obtain a circulation distribution 

where the total velocity, including the freestream and the ones induced by the vortices, is null in the normal direction of 

the body at the control point, also known as the non-penetration condition (Katz and Plotkin, 2001). As for the Kutta 

condition, it approximately complies with the positioning of the control point at the ¾ chord line (Katz and Plotkin, 

2001). Figure 2 illustrates the panel of a section of the surface. 

 

 

Figure 2. Panel of a surface with the positioning of the control point and the vortex (Katz and Plotkin, 2001) 

 

The calculation of the induced velocity vector at the control point is performed utilizing the Biot-Savart Law, 

integrated in a finite vortex filament, shown in Fig. 3. For implementation purposes, in the CEA-VLM code, the 

horseshoe vortices are composed by one small filament located at the ¼ chord line of the panel (the bound vortex) and 

other two filaments in the direction of the free stream that are extremely long. Equation 3 presents the induced velocity 

vector of a finite filament for a unitary circulation, also known as the influence coefficient. 

 

 

Figure 3. Characteristic vectors of a finite vortex filaments (Vargas, 2006). 
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Where aAB,P is the influence coefficient vector. For every jth panel, all the three coefficients (concerning the bound 

vortex and the two free vortices) are summed with respect to the control point of the ith panel, building a linear system 

presented in Eq. (3), applying the non-penetrating boundary condition. 
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Where ni is the unitary vector in the normal direction of the panel. Solving the linear system of Eq. (3) gives the 

circulation of each panel. By applying the Kutta-Joukowski’s theorem on the bound vortex of each panel, the forces (lift 

and induced drag) are obtained. Since the basis of the method are elementary flows that meets the Laplace’s equation, 

which considers that the fluid is incompressible and inviscid, the method itself cannot get reasonable results next to the 

surface’s stall angle, as in the Prandtl’s method. However, since the control point is located at the ¾ chord line, the 

method is able to get better estimations of forces and circulation distribution than the Lifting Line approach in surfaces 

with higher sweep angles (Katz and Plotkin, 2001).  
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2.2 Nonlinear methods 

 

All the methods presented herein manipulate the potential solution of the previously cited methods, aiming an 

increment of the viscous information of the flow presented in the airfoil section data (curves of lift, drag and moment 

coefficients versus the angle of attack of the airfoil), including friction and pressure drag and stall characteristics. 

 

2.2.1 Decambering 

 

The nonlinear procedure of the code CEA-VLM is based on the work of Mukherjee, et al. (2003). It is an iterative 

method which the main idea is to change the geometrical angle of attack of each section, based on the airfoil section 

data, changing the non-penetrating boundary condition of the Wessinger’s method. The procedures of the iterations are 

described below. 

1. The linear solution from Wessinger’s method is obtained for iteration n, utilizing the local “free stream” 

angle of attack αsec (Section 2.1.2); 

2. The effective angle of attack is calculated from Eq. (4); 
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Where δ is the decambering angle of each panel (equal to zero in the first iteration) and CLsec the local lift 

coefficient, calculated from the Kutta-Joukowski’s theorem, using the free stream dynamic pressure and 

panel area as references; 

3. With the effective angle of attack, the viscous lift coefficient (CLvisc) is obtained from the local airfoil 

section data. Then, the difference between CLvisc and CLsec is computed as the variable ΔCL; 

4. A new decambering angle is calculated from ΔCL, using Eq. (5), and the local “free stream” angle of attack 

is incremented, as shown by Eq. (6); 
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5. With the new value of αsec, a new solution of the linear system of the Wessingers’s method is possible, 

returning to step 1, until the absolute value of ΔCL is lower than a certain tolerance. 

With this procedure, the method can couple the potential flow solution with the local airfoil lift coefficient curve. 

The problem appears once the iteration reaches an effective angle of attack where the lift curve slope is negative, when 

the values of CLvisc and CLsec start to diverge. When this happens, the effective angle of attack continues to rise, since the 

value of ΔCL rises as well, until it reaches the last angle in the section data. At this point, inside the code, for higher 

angles, all the coefficients are equal. Because of that, the iteration procedure starts to converge again, since it is only 

necessary the convergence of the parameter CLsec (and, virtually, the slope is no longer negative). The final consequence 

is that, when the effective angle of attack is higher than the stall angle, the method converges to the limit angle of the 

local airfoil curves (Mello, 2014). 

 

2.2.2 Chattot’s method 

 

In the formulation of this methodology, presented in the work of Chattot (2004), the surface is treated as a 

positioning of jx nodes (correspondent to the free vortices) along the span at a distance y from the center; and jx-1 

integration points (correspondent to the control points of the Prandtl’s method), located between the nodes, at a distance 

η from the center.  

From the Kutta-Joukowsky’s theorem, the local circulation may be written in the form presented in Eq. (7), relating 

it with the panel lift coefficient, for a unitary speed and semi-span. 

1
( ) ( ) [ ( )]

2
L effc C      (6) 

 

Where c is the chord of the surface at the integration point. The connection to the airfoil section data is created by 

the term CL[αeff(η)], that is, the lift coefficient is a function of the effective angle of attack, in other words, the one 

obtained from the lift curve of the airfoil. Considering the velocity triangle on each integration point, the effective angle 

of attack may be written as shown by Eq. (7). 
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Where wind is the velocity induced by the free vortices (located at the nodes), that is related to the circulation by the 

discretization of the Biot-Savart’s law, as presented by Eq. (8). 

 
1

1

1

1
, 1, , 1

4j

jx

k k

ind

k k j

w j jx
y







 
   




 
 (8) 

 

Where the index j represents each integration point. Equations (6) to (8) are the basis of the method, and by the 

location of the nodes and the integration points, the method is similar to the Lifting Line. Since there is no analytical 

function relating CL and αeff, it is necessary an iterative method to find a circulation distribution that attends Eq. (6). 

This procedure is initiated by the linearization of this same equation, resulting in Eq. (9). 

 

1

2

j

j j

eff j

L

j j j L eff

dC
c C

d


 
      
  
  




 (9) 

 

Where ΔΓ is the variation of the circulation in the integration point. The porpoise of the linearization is to relate this 

parameter to the change of other variables. In Eq. (9), it is related to change of effective angle of attack (Δαeff). Applying 

the same logic into Eq. (7) and Eq. (8). 
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Noting that the linearization is performed by means of a “discrete derivation” in relation to the circulation of the 

panel itself, so all terms dependent on the circulation of other panels in Eq. (8) become null. The variable aj in Eq. (11) 

is similar to the influence coefficient presented in Eq. (3), correspondent to the influence of the panel free vortices on 

their own integration point. This logic will be used in the implementation of this method into the CEA-VLM code 

(Section 3). 

Placing Eq. (11) into Eq. (10), then into Eq. (9) and isolating the term ΔΓ, the variation of circulation due to the 

airfoil lift coefficient is obtained, or, in other words, the n iteration step, as can be shown by Eq. (12). 
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Where ω+ is a relaxation factor. 

However, after the stall, the sign of the airfoil lift curve slope becomes negative, allowing the denominator of 

Eq. (11) to become negative (since aj is always negative), depending on the value of the slope. This fact leads to the 

divergence of the method (Chattot, 2004). Therefore, to correct this problem, it is introduced an “artificial viscosity” μ 

in the denominator, with its estimated contribution in the numerator, as shown by Eq. (12). 
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The coefficient μ is arbitrary but must have a value high enough to make the denominator positive when the slope is 

negative. Consequently, the artificial viscosity may be written according to Eq. (13). 
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Where κ is an arbitrary positive coefficient, that must be higher than 0,25. With the formulation presented, the 

iterative method is completed, following the scheme detailed below. 

1. From the geometry of the surface, and the distribution of nodes and integration points, the influence of each 

free vortex on each integration point is computed and, therefore, the coefficient aj is obtained; 

2. An initial circulation distribution is estimated. This can be performed by means of both Wessinger’s and 

Prandtl’s method; 

3. The induced speed on each integration point is calculated from Eq. (8), and with that, the effective angle of 

attack, using Eq. (7); 

4. With the airfoils lift curves, the lift coefficient and the slope of the curve are interpolated using the 

effective angle of attack, on each integration point; 

5. Using all the data gathered on each integration point, the variation of circulation ΔΓ is computed by means 

of Eq. (11) or Eq. (12), depending on the sign of the lift curve slope estimated before; 

6. Through the addition of the initial values of circulation with ΔΓ, a new distribution is obtained, returning to 

step 3 until the maximum absolute value of ΔΓ is lower than a certain tolerance. 

It must be noted that the formulation of the Chattot’s method is closer to the Lifting Line approach than the 

Wessinger’s method. Therefore, many its characteristics, and defects, are present in the method described. However, it 

has a different approach for stalled panels, and, as it will be shown later, it leads to more reasonable results. 

 

3. FORMULATION CHANGES FOR IMPLEMENTATION 

 

Since the software CEA-VLM makes use of dimensional variables, and the formulation presented in the work of 

Chattot (2004) assumes a unitary value of velocity and semi-span, it was necessary an adaptation before the actual 

implementation of the method. 

The main change happens in the Kutta-Jukowky’s theorem. Considering the values of the panel span and the 

freestream velocity in the formulation, Eq. (14) is deduced. 
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Where V is the freestream speed. Note that the span of the panel disappears from Eq. (14) since the reference area 

for the lift coefficient is the span itself times the chord. 

Another change in the formulation was applied in the deduction of the effective angle of attack, since, in the original 

formula, the freestream speed was also considered to be unitary. Therefore, considering the actual velocity in the panel, 

Eq. (15) is obtained. 
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Where Vn and Vm are the local velocities in the normal direction and the chordwise direction, respectively, 

considering even the velocities induced by the horseshoe vortices. 

With these changes, the same procedures are carried on as in the original formulation (Section 2.2.2), resulting in 

changes on the final equations of the iterative method, all shown in the Eq. (16) to (18). 
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Where ajj is the influence coefficient vector of the horseshoe vortex on its own panel. 

 

4. RESULTS AND VERIFICATION 

 

The formulation adapted from Chattot’s method, presented in Section 3, was implemented into the CEA-VLM 

code. To verify the procedure, as well the method itself, the results were compared with experimental data presented in 

the report made by Purser and Spearman (1951), for a determined group of wings. The airfoil lift and drag coefficient 

curves, for each wing, were obtained from the experimental data given by the report of Sheldahl and Klimas (1981), 

interpolated for the Reynolds number of each section of the wing, given its geometry and the velocity of the experiment. 

Tables 1 to 4 presents the geometrical characteristics and Fig. 4 to 7 the mesh of each wing analyzed. 

 

 
Table 1. Geometrical data of Wing 1 

 

Figure 4. Mesh of the Wing 1 

 

Span 1,524 m 

Root chord 0,254 m 

Tip chord 0,254 m 

Aspect Ratio 6 

Sweep at ¼ chord line 0º 

Airfoil NACA 0012 

 

 
Table 2. Geometrical data of Wing 2 

 

Figure 5. Mesh of the Wing 2 

 

Span 1,524 m 

Root chord 0,423 m 

Tip chord 0,085 m 

Aspect Ratio 6 

Sweep at ¼ chord line 6,34º 

Airfoil NACA 23012 

 

 
Table 3. Geometrical data of Wing 3 

 

Figure 6. Mesh of the Wing 3 

 

Span 1,524 m 

Root chord 0,381 m 

Tip chord 0,127 m 

Aspect Ratio 6 

Sweep at ¼ chord line 14,04º 

Airfoil NACA 23012 
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Table 4. Geometrical data of Wing 4 

 

Figure 7. Mesh of the Wing 4 

 

Span 1,524 m 

Root chord 11,54 in 

Tip chord 11,54 in 

Aspect Ratio 5,2 

Sweep at ¼ chord line 30º 

Airfoil NACA 0015 

 

Figures 8 to 11 present the results comparison. In then, it is possible to observe the bad behavior of the original code 

for angles of attack near the stall. Furthermore, the estimative of the maximum lift coefficient from CEA-VLM 2.0 was 

more accurate for the wings 1 and 3, and for all wings, the drag estimation was better as well. 

The results for wing 4 supports the statement that, since the new method implemented is closer to the Lifting Line 

method than the original one, it carries most of its characteristics and defects. In this analysis, the new formulation lost 

accuracy for the estimative of the maximum lift coefficient for wings with high sweeps, which is the case of the wing 4. 

 

 

Figure 8. Results comparison for Wing 1 

 

 

Figure 9. Results comparison for Wing 2 
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Figure 10. Results comparison for Wing 3 

 

 

Figure 11. Results comparison for Wing 4 

 

The results in Fig. (11) show that the new implemented method gained a tendency to underestimate the maximum 

lift coefficient and the stall angle of highly swept surfaces and, in the work of Araújo (2016), it was observed the same 

behavior for surfaces subjected to a yaw angle. As explained by the author, this happens because of the appearance of a 

transversal velocity component (in other words, in the span direction) in analyzes of those types, that changes the nature 

of the boundary layer next to the surface. Since the airfoil data does not consider this type of situation, this creates 

another error source that is proportional to the transversal velocity value. In an extreme case, this may induce the 

appearance of convoluted streamlines in the middle of the surface (like the tip vortices), that increases the lift and 

delays the stall (Anderson, 1984). This limitation is a characteristic of the Lifting Line Method, as explained in Section 

2.1.2. 

It must be noticed as well that the resulting distribution of lift coefficient and effective angle of attack became more 

reasonable with the new method, as shown in Fig. (12) and Fig. (13), for the analysis of the Wing 1. 

 

  

Figure 12. Results for the distribution of the effective angle of attack in the analysis of the Wing 1 
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Figure 13. Results for the distribution of the airfoil lift coefficient in the analysis of the Wing 1 

 

5. CONCLUSION REMARKS 

 

The new iterative method implemented in the CEA-VLM code were capable to maintain the convergence even in 

the analysis subject to the stall of the surfaces. In the tests performed, the distributions of forces, circulation and 

effective angle of attack were more reasonable. 

Comparing the global coefficients with the experimental data, the new code improved the accuracy of the estimation 

of both the maximum lift coefficient and stall angle. For the linear part of the lift curve, the two methods provide very 

close results. However, after the stall angle, even with the convergence of the method, in the surfaces analyzed, there 

was an overestimation of the lift, leading to a “softening” of the stall region. 

As mentioned before, since the new method implemented is closer to the Lifting Line Method than the original one, 

it carries most of its characteristics and limitations, as shown in Section 4. But above all that, with the new iterative 

method, the software CEA-VLM 2.0 was capable of obtaining better estimates of maximum lift coefficient and stall 

angle than the original code. However, it must be observed the limitations of the code, bounded to the type of analysis 

of the flow, truncation errors of the iterative method and the reliability of the airfoil section data. 
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