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Abstract. The precise evaluation of parameters of material models is essential to achieve better design solutions, but
conventional measuring techniques lead to difficulties when applied to materials that withstand large deformation, e.g.
elastomers. Solutions as non-intrusive techniques have been developed to overcome these difficulties. The aim of the
present article is to identify material model parameters from uniaxial tensile tests with subsequent loadings and unload-
ings assisted by digital image tracking (DIT). The identification procedure has been applied to four hyperelastic models:
Neo-hookean, Arruda-Boyce, Money-Rivlin and Yeoh. A bicomponent translucent silicone rubber (RenCast 4644-1 -
Huntsman) was studied under different displacement levels in order to observe the Mullins effect and evaluate parame-
ters for the material model. Arruda-Boyce and Yeoh hyperelastic models with Mullins effect presented the best fit to the
uniaxial tensile data.
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1. INTRODUCTION

Elastomers are used in several applications due to their excellent energy absorption potential and their capacity to
undergo large deformation and to retain initial configuration with small permanent strain after unloading. Vibration
isolators, engine mounts and vehicles tires are some typical applications of this type of material (Kim et al., 2004; Ilić
et al., 2017).

Several material models have been proposed to describe the behavior of elastomers, and, for large deformations,
hyperelastic models are commonly used. Other phenomena such as Mullins effect and damage can also be included in
these models. Some capacities are expected of an efficient hyperelastic material model as (Chagnon et al., 2004):

• The ability to reproduce the ‘S’-shaped response of elastomers;
• Behave under several deformation modes (tensile, pure shear, equibiaxial, etc.);
• A small number of parameters;
• A simple mathematical description suitable for numerical implementation.

Conventional measuring techniques lead to difficulties when applied to elastomers due to its large deformation. For
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example, the contact of an extensometer on the specimen can influence the local mechanical behavior. Optical methods
can overcome these difficulties by a non-intrusive evaluation of the displacement between two reference points, e.g. the
digital image tracking (DIT). The aim of the present article is to identify the material model parameters from uniaxial
tensile tests with subsequent loadings and unloadings, assisted by DIT.

2. HYPERELASTIC MATERIAL MODELS

Several review articles can be found about the constitutive relation for rubber materials (Boyce and Arruda, 2000;
Marckmann and Verron, 2006). Due to their nonlinear behavior and large shape changes, they are modeled as hyperelastic
materials. Hyperelastic models are described in terms of their strain energy potential, which is the energy stored per unit
of reference volume when deforming it to the current configuration. Several models for this potential are proposed in the
literature, and most of them describe it as a function of strain invariants (Dassault Systèmes Simulia, 2014). Hyperelastic
material models can be written based on a phenomenological description, statistical mechanics or a combination of them.

One of the available models in AbaqusTM has a polinomial form, defined as:

U =

N∑
i+j=1
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where Cij and Di are material parameters, Jel is the elastic volume ratio, I1 and I2 are the first and second invariants of
the left Cauchy-Green strain tensor, which are written in function of the stretch (λ), i.e.:
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The parameters Di determine the material compressibility. In this work the material is assumed to be incompressible,
which leads to Di = 0.

When setting specific coefficients values, particular forms may be obtained, as the Neo-Hookean (Treloar, 1944),
Mooney-Rivlin (Mooney, 1940) and Yeoh (Yeoh, 1990) forms, respectively described by:

U = C10(I1 − 3) (4)

U = C10(I1 − 3) + C01(I2 − 3) (5)

U = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (6)

Besides these phenomenological models, statistical mechanics models have been proposed as well, e.g. the Arruda-
Boyce one, which is based on an eight-chain representation of the rubber network structure (Arruda and Boyce, 1993),
resulting in a strain energy density function of the form
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where µ and λm are material parameters and
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The identification of the hyperelastic model parameters consists on determining the values of the material constants
C10, C20, C30 and C01 (for the models described in the Eqs. 4 - 6) and (µ, λm) for the Arruda-Boyce model (Eq. 7).

2.1 Mullins effect

Some elastomers present an initial transient softening behavior when subjected to cyclic loading, known as Mullins
effect (Mullins, 1948, 1969). After the first loading, a stress-softening is observed, but subsequent loadings may be
necessary for the response stabilization. The softening appears again whenever a larger stretch is applied. As the maximum
stretch increases, this effect is intensified. The stress-strain response of an elastomer presenting this behavior is illustrated
in Figure 1 (Diani et al., 2009).

In AbaqusTM, the stress-softening is modeled by adding a scalar variable η to the strain energy potential function,
which represents the damage in the material (Dassault Systèmes Simulia, 2014). The modified energy potential function
is described by:

U = (λi, η) = ηŨdev(λi) + Φ(η) + Ũvol(Jel) (9)
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Figure 1. Softening behavior of elastomers presenting Mullins effect (Diani et al., 2009).

where Ũdev(λi) is the deviatoric part and Ũvol(Jel) is the volumetric part of the strain energy potential of the monotonic
hyperelastic behavior, which may be described by any of the previous energy functions. Φ(η) is the damage function,
written in terms of η, which varies continuously and is expressed as:

η = 1− 1

r
erf

(
Um
dev − Ũdev

m+ βUm
dev

)
(10)

where Um
dev is the maximum value of Ũdev during deformation history; r, β and m are material parameters; and erf(x)

is the error function.

3. EXPERIMENTAL PROCEDURE

3.1 Material and specimens manufacturing

The specimens used in the mechanical tests were made of a room-temperature-vulcanization (RTV) silicone rubber
(RenCast 4644-1 - Huntsman). It is produced by mixing the uncured silicone and the catalyst and curing it at room
temperature. The mixture is molded into sheets with constant thickness, from which the test specimens are cut. The
specimens manufacturing consists of five steps: (i) mixing the components with a 10/1 mass ratio (uncured silicone
and catalyst, respectively); (ii) sheet molding ; (iii) inserting the mold in a vacuum chamber to reduce the presence of
entrapped air bubbles; (iv) sheet demolding and specimens cutting; (v) marking dots on the specimens surface, used for
the identification of the displacement by DIT. The dog-bone specimens were cut using a stamping jig (ISO 527 - specimen
type 5A) and they had a section area of 4 x 4 mm2 and a 20 mm useful length.

3.2 Mechanical tests

Uniaxial tensile tests were conducted in a MTS-Bionix Universal Servo-hydraulic Testing Machine with a 5 kN capac-
ity load cell. The specimens were subjected to subsequent loadings and unloadings at four different displacement levels,
which increased progressively. Photographs were taken during each cycle.

The photographs were taken at 0.25 Hz with a CANON EOS Rebel T5 camera (18 megapixels sensor), a CANON EF
100 mm f/2.8 Macro lens and a LED lighting system. Figure 2 presents the experimental setup of the tensile tests.

3.3 Identification of the displacement by digital image tracking

The identification procedure consisted of five steps, illustrated in Figure 3: (a) a region of interest was selected and
the images recorded during the test were cropped; (b) the information from the green layer of the images was filtered, as
it presented better contrast; (c) an averaging filter was applied using the functions fspecial and imfilter available in MAT-
LAB; (d) another filter was applied to create binary images; (e) finally, the centroids of the dots marked on the specimens
were identified using the function regionprops in MATLAB. Maximum and minimum area criteria were adopted, besides
restricting the search region to the center of the specimen. From the positions of the identified centroids in each image,
their displacements were calculated and set as boundary conditions in the finite element model used for the identification
of the hyperelastic model parameters.
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Figure 2. Experimental setup of the uniaxial tensile test assisted by digital image camera.

Figure 3. Procedure adopted for the identification of displacements. Steps: (a) original image; (b) green layer filtered
image; (c) moving average filter; (d) binary operator over image; (e) identification of the centroids.

4. IDENTIFICATION PROCEDURE

The identification procedure of the hyperelastic model parameters was conducted by the comparison between the
experimental and numerical data. This procedure is an iterative process that aims to identify the set of parameters (p) that
minimizes the quadratic difference (T ) between the axial load predicted by the finite element model (Ffem(t,p)) and the
experimentally observed one (Fexp(t)), i.e.:

T (p) =
1

2

∫ tf

0

[Fexp(t)− Ffem(t,p)]
2
dt, (11)

where tf is the maximum testing time. The identification procedure has been conducted using Trust Region Reflective
Algorithm through the function lsqcurvefit available in MATLAB.

The finite element model simulates the mechanical behavior of the elastomer under uniaxial tensile loading. Figure 4
presents an schema of the finite element model used in the identification process. The model considers a planar stress
state where the inferior edge (A) has its vertical displacement constrained and in the superior edge (B), it is imposed
the difference between the superior and inferior edges’ displacements identified experimentally by the centroids position,
uB − uA (see Figure 3).

The identification procedure described above has been developed in two steps: (i) identification of hyperelastic model
parameters and (ii) identification of Mullins effect parameters. In the first step, the experimental curve without the unload-
ing has been used to identify the constitutive parameters (phyper). In the second step, the parameters identified before were
fixed and the Mullins model parameters were identified pmullins using the complete experimental data (with unloadings).
Table 1 presents the parameters to be identified in each procedure.
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Figure 4. Finite element model used in the identification procedure.

Table 1. Parameters of interest to be identified.

Identification step Hyperelastic model Parameters

(i) Hyperelastic parameters Neo-hookean (NH) phyper = [C10]
Arruda-Boyce (AB) phyper = [µ λm]
Money-Rivlin (MR) phyper = [C10 C01]

Yeoh (Y) phyper = [C10 C20 C30]
(ii) Mullins model parameters ALL* pmullins = [r m β]T

5. RESULTS AND DISCUSSION

The first part of the identification procedure was conducted to compute the hyperelastic model parameters using the
experimental curves without the unloadings. Table 2 presents the identified parameters for Neo-hookean, Arruda-Boyce,
Money-Rivlin and Yeoh hyperelastic models. Figure 5 shows the comparison of the identified models and the experimental
data used in the identification procedure. Based on the identification residual, T (eq. (11)), the best model fit was obtained
using Arruda-Boyce and Yeoh hyperelastic models. For these models, the largest identification residuals were observed
for the stretch between 1.7 and 1.8. The models are in good agreement with the experimental results, however, it can be
seen that the stress is overestimated up to stretch 1.4 and underestimated from 1.4 up to 1.75. This behavior shows that
the model can be used for engineering purposes only. Although the Mooney-Rivlin model also presents a good fit, the
negative C01 parameter identified may lead to unstable behavior for different loading modes (Bergström, 2015, p. 243).

Table 2. Identified parameters for different hyperelastic models based on the monotonic loading.

Hyperelastic model Identified parameters

Neo-hookean (NH) C10 = 1.317
Arruda-Boyce (AB) µ = 0.8313, λm = 1.161
Money-Rivlin (MR) C10 = 3.129, C01 = −2.872

Yeoh (Y) C10 = 1.028, C20 = 0.0000, C30 = 0.1075

The identified Arruda-Boyce and Yeoh models were used in the second part of the identification procedure to describe
the primary hyperelastic behavior, and Mullins model parameters were computed for each case using the experimental
curves with the unloadings. Table 3 presents the identified parameters using each hyperelastic model. Figures 6 and 7
show the comparison of the response considering and not considering Mullins effect and the experimental data used.

Table 3. Mullins model parameters identified for Arruda-Boyce and Yeoh hyperelastic models.

Hyperelastic model Identified parameters

Arruda-Boyce (AB+M) r = 2.061, m = 0.3342, β = 0.1771
Yeoh (Y+M) r = 1.983, m = 0.2349, β = 0.2763
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Figure 5. Comparison between experimental data and the identified hyperelastic models. Arruda-Boyce and Yeoh pre-
sented the lower residual in the identification procedure.
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Figure 6. Hyperelastic response according to Arruda-Boyce hyperelastic model with and without Mullins effect: (a) stress
vs. strain response; (b) stress vs. time response.

The results presented herein are preliminary and other tests – with more complex stress states – are necessary. Only
with these new tests, it will be possible to attest that the identified parameters have a physical significance. More robust
displacement measurements techniques, like Digital Image Correlation (DIC), will enable to capture different stress states
in a single test. However, some challenges must be overcome to apply this technique in specimens that undergo large
deformations, which can take off the artificial texture over the specimen during the tests, for example.

The studied hyperelastic models are able to predict the mechanical behavior of the elastomer under uniaxial loading
and also the softening behavior when applying the Mullins model. The investigation of the material response under
different deformation modes, though, is required to obtain a more suitable model for engineering applications.

6. CONCLUSIONS

The mechanical behavior under uniaxial loading of a bicomponent silicone rubber has been identified using an image
tracking algorithm, that enabled to measure the specimens’ strain, showing to be a valuable tool for identification of the
hyperelastic models parameters. It is important to highlight that because of the rubber flexibility, it is difficult to adopt
sensors, like strain gauges, to measure its behavior. Hyperelastic models parameters have been identified and the Arruda-
Boyce and Yeoh ones presented the best fit to the experimental behavior without unloadings. The unloading behavior can
be only fit by the introduction of the Mullins effect into the model, which can be described by three parameters. These
were also identified for each of the best fit models. A good agreement between the fit models and the experimental data
could be observed (maximum difference between experimental and numerical prediction of 0.15 MPa was obtained), but
improvements can be achieved by conducting other experiments involving different kinds of stress states (e.g. planar, pure
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Figure 7. Hyperelastic response according to Yeoh hyperelastic model with and without Mullins effect: (a) stress vs.
strain response; (b) stress vs. time response.

shear, equibiaxial).

7. ACKNOWLEDGEMENTS

The authors would like to thank CNPq (Proc. 164746/2017-0) for the financial support. Also, we would like to thank
Elisa Gamper Vergamini for her valuable assistance during the experimental tests.

8. REFERENCES

Arruda, E.M. and Boyce, M.C., 1993. “A three-dimensional constitutive model for the large stretch behavior of rubber
elastic materials”. Journal of the Mechanics and Physics of Solids, Vol. 41, No. 2, pp. 389–412. ISSN 00225096.
doi:10.1016/0022-5096(93)90013-6.

Bergström, J., 2015. Mechanics of solid polymers : theory and computational modeling. ISBN 9780323311502.
Boyce, M.C. and Arruda, E.M., 2000. “Constitutive Models of Rubber Elasticity: A Review”. Rubber Chemistry and

Technology, Vol. 73, No. 3, pp. 504–523. ISSN 0035-9475. doi:10.5254/1.3547602.
Chagnon, G., Marckmann, G. and Verron, E., 2004. “A comparison of the hart-smith model with arruda-boyce and gent

formulations for rubber elasticity”. Rubber chemistry and technology, Vol. 77, No. 4, pp. 724–735. ISSN 0035-9475.
doi:10.5254/1.3547847.

Dassault Systèmes Simulia, 2014. Abaqus 6.14 Theory Guide. ISBN 9788578110796. doi:
10.1017/CBO9781107415324.004.

Diani, J., Fayolle, B. and Gilormini, P., 2009. “A review on the Mullins effect”. European Polymer Journal, Vol. 45,
No. 3, pp. 601–612. ISSN 00143057. doi:10.1016/j.eurpolymj.2008.11.017.
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