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Abstract: The transport properties (Surface to Volume ratio, Porosity, Permeability and Tortuosity) with the current 

simulations methods can be quick, but requires high computational cost. The article: "Estimate of transport properties 

of porous media by microfocos x-ray computed tomography and random walk simulation" (Nakashima & Watanabe, 

2012) shows how to get these properties through the random walk. The technique requires little computational cost and 

gets good results. In this work is implemented the algorithm described by Nakashima & Watanabe (2012). The program 

is applied to a problem equivalent to those studied by the authors as a way of validating the implementation. After this,is 

done  the study of digital rocks obtained by x-ray microtomography from reservoir rocks. The digital rocks have 10003 

voxels and are described in Raeini, et al., 2017.  

 

Keywords: Monte Carlo, Porous Media, Random Walk. 

 

1. INTRODUCTION 

 

The Young-Laplace Method-YLM (Hazlett, 1995; Magnani, et al., 2000; Hilpert, 2001) is a fast simulation method 

because it simplifies the physics of the flow problem in porous media considering only the geometry of the invasion front. 

In addition, it has the advantage of simulating any type of geometry, however complex it may be. Other numerical methods 

may even simulate any kind of geometry, such as the Lattice Boltzmann method (LBM) (Qian, et al., 1992; Chen, et al., 

1992), but the simulations are more time-consuming. Of course, the accuracy of the description of the invasion front of 

the LBM is much more accurate than that of the YLM (Wolf, et al., 2013). In addition, the LBM has the advantage of 

simulating the flow dynamics, an impossible task for YLM. It would be very interesting to have a method able to reconcile 

the advantages of the LBM with those of the YLM, that is, the ability to describe the dynamics of the invasion with low 

computational cost. If, in addition, the method is more accurate in describing the dynamics and the invasion front than 

YLM, this method would acquire a relevant role in the area. There is an attempt in the literature to develop such a method 

through the so-called Random Walk Simulations (RWS) (Nakashima & Watanabe, 2012). In RWS virtual particles are 

generated that move through the porous medium following a law of displacement and thus "map" the entire medium. The 

great difficulties are (i) to identify the law of displacement based on a minimalist physics of the porous medium and (ii) 

to be able to extract the relevant information from the statistics of this Random Walk. The work of Nakashima & 

Watanabe (2012) is quite simple in terms of numerical implementation and has great potential for development to obtain 

significant results.  
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2. COMPUTATIONAL PROCEDURES 

 

      To obtain the transport properties (Permeability, Surface to Volume ratio and Tortuosity) of a porous medium, the 

RWS was implemented, as described by Nakashima & Watanabe (2012). The rocks used were obtained from Raeini, et 

al., 2017, and are described in Table 1. 

 

Table 1. All the rocks used in simulations1 have 10003 voxels. 

Name Type Porosity Resolution (μm) 

Bentheimer 
Sandstone 

0.216 3.0035  

Doddington 0.194 2.6929 

Estaillades 
Carbonate 

0.109 3.3114 

Ketton 0.132 3.0001 

   

 Each walker starts from a random starting point in the rock so that it is guaranteed that all connected porous voxels 

from the Digital Rock are accessed. Each walker walks a random path inside the rock and can move only to the first 

neighbors, that is, a voxel poro at a time. At each steps or time a new direction it will be generated. When a solid part of 

the rock appears during the course, the walker should stay in the same place and wait for the next step to sortition new 

direction. Figure 1 shows the path evolution of the walk through time: 

                                                           
1 Available at:<http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-

modelling/micro-ct-images-and-networks/ > 

Figure 1. Example 2D of Random Walk. (i) artificial 2D geometry where the black represents the 

solid parts and white pore. (ii) to (iv) path evolution of a walker in relation to the number of steps. 

http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
http://www.imperial.ac.uk/earth-science/research/research-groups/perm/research/pore-scale-modelling/micro-ct-images-and-networks/
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It must be taken care must be taken with the random number generator so that the walking directions do not have 

statistical vices, this is why an OpenMP2  library is used with the L’Ecuyer (1999) "RngStreams" generator (multiple 

independent streams of pseudo-random numbers), as it is suitable for parallelized workstations. From its origin in the 

rock is calculated the displacement traveled at each step. Then is calculated the average  square of the distances traveled 

in step τ to all walkers: 

〈‖𝑟(𝜏)‖2〉 =  
1

𝑛
 ∑‖𝑟𝑖 ⃗⃗ ⃗(𝜏)‖2                                                                                                                                                               

𝑛

𝑖=1

(1) 

By throwing the walker in a fully porous medium its mean square displacement as a function of time τ will have a 

linear behavior. In the real case of a rock with solid and porous voxels its mean square displacement as a function of τ 

will have a curvature as shown in Fig. 2i. The number of particles defines the precision, the higher their number, the better 

their curve will be generated. A long time (or many steps) is important to check if walkers have traveled all over the rock. 

With the mean square displacements obtained as a function of each time or step τ the next step is to apply a numerical 

derivation in the data. Using the numerical derivative as only consecutive differences (Nakashima & Watanabe, 2012) 

we will have: 

 

𝑑〈‖𝑟(𝜏)‖2〉

𝑑𝜏
=  〈‖𝑟(𝜏 + 1)‖2〉 − 〈‖𝑟(𝜏)‖2〉                                                                                                                                     (2) 

                                                           
2 Matthew Bognar; Department of Statistics and Actuarial Science, University of Iowa,   

<http://www.stat.uiowa.edu/~mbognar/omprng>. 

Figure 2. (i) Mean square displacement as a function of each step or time τ for a walk in a fully porous 

region (unrestricted diffusion) and a region with solid voxels and voxels porous (real rock, restricted 

diffusion). Figure adapted from fig. 1 (b) from Nakashima & Watanabe (2012). (ii) Derivative of the 

mean squared displacement. Factor of applied correction of 1/6 and values divided by D0. Figure 

adapted from fig. 1 (c) from Nakashima & Watanabe (2012). ( iii ) Graph of mean square 

displacement as a function of time τ of the Estaillades carbonate rock for 2x105 particles with 107 

steps. (iv) Fitting of eq. 4 to the first 1050 points (Fig. 4). The permeability is obtained using the 

results of the fit in the equation (6). 
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    A correction factor is applied, the values obtained are multiplied by 1/6. The procedures are described in Nakashima 

& Watanabe (2012). The data it is divided by D0 (value of the first derivative) after a curve adjustment is fitted to, the 

data is done with at equation: 

𝐷

𝐷0
= 1 −

4

9√𝜋
(

𝑆

𝑉
)

𝑝𝑜𝑟𝑒 
√𝐷0𝑡 + 𝐶1𝑡  𝑎𝑠 𝑡 → 0                                                                                                                              (3) 

where: C1 is a constant, is the surface ratio by volume  (
𝑆

𝑉
)

𝑝𝑜𝑟𝑒 
 of the pore space and t → 0 represents that only the initial 

points are adjusted. Therefore eq.3 is valid only for the first steps. For a given rock, the “first steps” are those in which 

the walker is inside the original pore or have not gone too far away. For adjustment the equation is reduced to: 

𝑦 = 𝑦0(1 − 𝑎√𝑡 + 𝑏𝑡)  𝑎𝑠 𝑡 → 0                                                                                                                                                      (4) 

where: 𝑎 =
4

9√𝜋
(

𝑆

𝑉
)

𝑝𝑜𝑟𝑒 
√𝐷0   ; b = c1 e y0 = D0 

therefore: (
S

V
)

pore 
=

9√π a

4√D0
                                                                                                                                                                   (5)  

 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Surface to Volume ratio 

 

In order to obtain the Surface to Volume ratio of the rock, equation (5) is used with parameters of the curve fitting of 

eq. 4. For the simulation 2 × 105 particles with 107 steps are used in all rocks. Table 2 presents the data for Surface to 

Volume ratio of the porous medium by means of RWS fitting and with direct measurement. 

 

Table 2. Surface to Volume ratio obtained by the RWS and by direct measurement 

of the digital rock. Units in 104 m-1. 

 

Name RWS fitting Measured 

Bentheimer 9.21 11.06  

Doddington 8.36 8.09 

Estaillades 10.15 11.05 

Ketton 6.57 7.33 

 

 

3.2 Absolute Permeability 

 

The absolute permeability can be estimated with using the Kozeny-Carman equation (Tiab and Donaldson, 1996), using 

the volume surfaces obtained from adjust the curve fitting: 

𝑘 ≈  
ϕ

(
D0

D∞
) (

S
V

)
pore

2                                                                                                                                                                                (6) 

 

where: k is the permeability, ϕ is the porosity and D∞ is the asymptotic (Fig. 2ii). 

For the purpose of comparison, absolute permeabilities  were obtained through the LBM (Lattice Boltzmann Method). 

Permeabilities from Raeini et al, 2017, are also tabled for reference. The values are presented in table 3: 

 

Table 3. Permeability obtained through the RWS, LBM and the values  

of Raeini et al, 2017. Units in Darcy (D). 

 

Name Raeini LBM RWS 

Bentheimer 3.60 3.37 298.12 

Doddington 3.81 3.07 32.84 

Estaillades 0.22 0.24 0.36 

Ketton 5.99 3.80 20.13 
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3.3 Tortuosity 

 

The tortuosity by RWS is obtained by dividing D0 by D∞ of the adjusted curve. For comparison purposes the  

tortuosities where also obtained by means of the LBM. The results are shown in Table 4: 

 

Table 4. Tortuosities obtained through RWS and LBM. 

Name LBM RWS 

Bentheimer 1.60 1.93 

Doddington 1.64 1.80 

Estaillades 2.24 2.20 

Ketton 1.66 1.68 

 

 

4. CONCLUSIONS 

 

It is necessary to apply equation (6) to obtain the permeabilities. It depends on the D0 and D∞ values, which are 

fundamental for obtaining the data of interest. It is important to note that the longer the walker's movement, the closer it 

will be to a reasonable value for D∞. Consequently, it is a significant data for the actual permeability of the rock. The 

study rocks have 10003 voxels and therefore require many steps for is walkers traverse the entire porous medium and to 

obtain a good enough value for D∞, the number of necessary steps should be enough to get to asymptote (Fig. 2i). We 

used 107 steps with 2x105 walkers, but as can be seen in Fig. 2 iii, walkers did not they the entire rock, that is why the 

curve did not reached an asymptotic behavior. The method applied to obtain the permeability was promising, however, 

subjecting the particles to longer walks is essential to obtain data closer to the results obtained with the LBM. Such 

conclusions and tests will be shown in future articles. 

Obtaining the Surface to Volume ratio and Tortuosity in the porous medium by the RWS, unlike permeability, is not 

dependent on a long walk, is limited only to curve fit. However, one must be aware of the number of points that will be 

adjusted in the equation because they interfere with the result. An ideal number of points may vary for the type of rock 

and its size. A rock with a typical pore size (average pore size) allows the walker to traverse the porous medium and to 

reach the asymptote (Fig. 2i) faster than a rock with pores of atypical sizes. It can happen that the walker starts in a closed 

porous region, this causes an erroneous data because it does not represent the region of interest, to make this walk data 

negligible, it suffices to have an expressive number of walkers. The results of Table 2 are shown expressive compared to 

the data measured directly in the porous medium. As a result of this, the method is promising, since with a reasonable 

particle walk (with 107 steps, they were able to traverse ≈ 1/6 of the porous medium) thus obtaining relevant data. Is fits 

to subject the particles to longer walks and identify means to minimize the arbitrariness of the number of points in the 

curve fit. 
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