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Abstract: Separation bubbles have been demonstrated to have an intrinsic instability mechanism, which results in
the appearance of spanwise-periodic three-dimensional structures. The instability mechanism responsible for three-
dimensionality was found to become active, in incompressible flow, under conditions in which wavelike, two-dimensional
perturbations are only convectively unstable, and thus would require of continuous external excitation to dominate the
physics. The aim of this work is to extend this analysis to compressible subsonic separation bubbles, as compressibility
could alter the qualitative picture. Direct numerical simulations are carried out to obtain two-dimensional base flows, de-
termining the conditions for the appearance of self-sustained two-dimensional oscillations. For those bubbles that remain
steady in the two-dimensional simulations, a linear instability analysis based on two-dimensional eigenmodes - referred
to as biglobal analysis in the literature - is applied to the study of the stationary three-dimensional instability. The effect
of Reynolds and Mach numbers on both kinds of instabilities and the conditions under which they become active are also
documented.
Keywords: separation bubbles, compressible subsonic flow

1. INTRODUCTION

The understanding and identification of the physical instability mechanisms responsible for the appearance of un-
steadiness and three-dimensionality on laminar separation bubbles can provide a fundamental insight into the aerody-
namic characteristics of airfoils at stall conditions, and guide the development of strategies for the control of separated
flows. Due to the combined effect of the airfoil curvature and angle of attack, an adverse pressure gradient appears past
the nose suction peak. If this pressure gradient is strong enough, the laminar boundary layer will separate and give rise
to a detached mixed layer, which encloses a region in which fluid motion is much slower and in the opposite direction,
referred to as recirculation region. The mixing layer is very unstable to inviscid instability of the Kelvin-Helmholtz type
(Lin, 1955), and eventually the laminar flow will transition to a turbulent regime. Finally, the strong mixing provided by
turbulence forces the flow to reattach.

The instability and transition characteristics of laminar separation bubbles have been addressed by many experimental
and numerical works considering the simple set-up of a flat-plate boundary layer subjected to an external flow deceleration,
equivalent to an adverse pressure gradient (Rist and Maucher, 1994, 2002; Diwan and Ramesh, 2012; Marxen et al.,
2013; Embacher and Fasel, 2014). Environmental disturbances are presented naturally in wind tunnel experiments, while
controlled disturbances are commonly introduced at the inlet of the computational domain, that feed on the separated-flow
instability trigger the laminar-turbulent transition process. Thus, the details of the transition process depend completely on
the kind of external perturbations that are imposed upstream of the separation. In fact, it has been demonstrated that many
different instability mechanisms, linear and nonlinear, may play a role in the amplification of environment or externally
imposed perturbations. However, this classic description of the transition process on laminar separation bubbles is based
on what is called “the amplifier behavior of laminar separation bubbles” which assumes that external perturbations are
present and consequently dominate the physics.

Much less work has been done considering the potential of laminar separation bubbles of presenting self-destabilizing
mechanisms, that could initiate transition in scenarios in which external disturbances are very weak or even totally absent.
These intrinsic or self-excited instability mechanisms acting on nominally two-dimensional and steady separation flow
would be responsible for the break-down of the two main symmetries existing in the set-up, namely the invariance with
respect to time and with respect to the third, spanwise direction.

Considering incompressible flow, Rodrı́guez et al. (2013) studied the competence of two self-excited instability mech-
anisms in order to ascertain which of the two possible mechanisms should be expected to dominate. The first mechanism
corresponded to a global oscillator that turns the steady two-dimensional bubble into an unsteady one, ultimately leading
to vortex shedding; the second one was a three-dimensional global eigenmode, associated to a centrifugal instability, that
was conjectured by Dallmann (1988) and then confirmed by Theofilis et al. (2000). Rodrı́guez et al. (2013) showed the
dominance of the three-dimensional instability, concluding that, in the absence of external forcing, incompressible laminar
separation bubbles should be expected to become three-dimensional and give rise to spanwise periodic flow topologies as
described by Rodrı́guez and Theofilis (2010).

The implications of this discovery were addressed by Rodrı́guez and Gennaro (2015); Gennaro et al. (2015). Provided



that unforced bubbles in a perfectly two-dimensional and time-independent set-up become three-dimensional as a result
of a self-excited global flow instability, secondary instabilities could appear resulting from the steady distortion of the
separation bubble that give rise to self-sustained oscillations. This possibility was confirmed in Rodrı́guez and Gennaro
(2015) for separation bubbles characterized by a reversed flow velocity lower than that expected for the global oscillator
to appear as a primary instability, explaining the process through which an unforced bubble becomes unsteady and three-
dimensional and initiates the laminar-turbulent transition.

The aim of this work is to extend the previous analyses to compressible subsonic separation bubbles, and to investigate
if the compressibility could alter the qualitative picture. A flat-plate boundary layer subjected to an adverse pressure
gradient was considered again as the model configuration for laminar separation bubble. The bubble considered here is
of the kind that occurs in the leading edge of a thin airfoil when it is at high angle of attack. For this, direct numerical
simulations were carried out to obtain two-dimensional base flows.

2. METHODOLOGY

The transition process from laminar to turbulent flow is generally associated to instabilities with the reference laminar
flow, named base flow. Small perturbations grow in amplitude extracting energy from mean flow and generate structures
of finite amplitudes that initiate the transition process through the nonlinear interactions. The study of flow instabilities
provides a better understanding of the physical mechanisms involved and can be used to build theoretical and reduced-
order models for the effects associated with the structures generated during the transition process, as well as provide
insight for the development of flow control strategies.

The study of the hydrodynamic instability mechanisms investigates the response of the flow to small-amplitude dis-
turbances, which permit the linearization process of the equations Navier-Stokes. The homogeneity of the linearized
equations with respect to time suggests a behavior exponential in the time for the disturbances, transforming the equations
in an eigenvalue problem for modal disturbances.

In many cases of practical interest, the base flow depends solely on two of the three spatial directions. Flow quantities
are then decomposed according to

q(x, y, z, t) = q̄(x, y) + εq′(x, y, z, t), (1)

where the time-independent base flow is prescribed as

q̄ = (ū(x, y), v̄(x, y), w̄(x, y), T̄ (x, y), p̄(x, y))T . (2)

In this case, the linear operators are homogeneous in the z−direction and modal disturbances take the form

q′(x, y, z, t) ∼ q̂(x, y)ei(βz−ωt), (3)

where β is a number related to a wavelength the frequency (or wavelength) Lz = 2π/β. The introduction of β is
equivalent to performing the Fourier transform of the equations in the z−direction. The linear disturbance equations of
two-dimensional eigenfunction problem are obtained by substituting the decomposition (1) into the governing equations,
taking ε� 1, linearizing about q̄ and neglecting terms at O(ε2).

In the temporal framework, β is taken to be a real wavenumber parameter describing an eingenmode in the z-direction,
while the complex ω and the eigenfunctions q̂ are sought. The real part of the eigenvalue is related with the frequency
of the global eigenmode while the imaginary part is the temporal growth/damping rate. A positive value of ωr indicates
exponential growth of the instability mode in the time while ωi indicates decay of perturbation in time. Thus, we can be
written as the complex non-symmetric generalized eigenvalue problem in its most general form

L(q̄, β, Re,Ma)q̂ = ωRq̂ (4)

which these assumptions, takes the form:

L =


Lx,û Lx,v̂ Lx,ŵ Lx,θ̂ Lx,p̂
Ly,û Ly,v̂ Ly,ŵ Ly,θ̂ Ly,p̂
Lz,û Lz,v̂ Lz,ŵ Lz,θ̂ Lz,p̂
Le,û Le,v̂ Le,ŵ Le,θ̂ Le,p̂
Lc,û Lc,v̂ Lc,ŵ Lc,θ̂ Lc,p̂

 (5)

R =


Rx,û 0 0 0 0

0 Ry,v̂ 0 0 0
0 0 Rz,ŵ 0 0
0 0 0 0 Re,p̂
0 0 0 Rc,θ̂ Rc,p̂

 (6)

This two-dimensional eigenmode problem is solved numerically using a high-order finite-difference scheme and the
algorithm and numerical methods described in Gennaro et al. (2011); Gennaro (2012); Gennaro et al. (2013). After dis-
cretization, the eigenvalue problem is solved using an in-house implementation of the shift-and-invert Arnoldi algorithm.
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This Krylov’s subspace iteration allows for the efficient computation of an arbitrarily large window of the eigenspectrum
at a small fraction of the cost of alternatives like the QZ algorithm. Matrix operators are formed and operated on in sparse
format. The most demanding task in the Arnoldi algorithm, namely the LU decomposition of the matrix, is performed us-
ing the open-source library MUMPS (Amestoy et al., 2001). The use of sparse storage and operations reduces drastically
the computational resources required for the solution as compared to an equivalent dense-algebra computation.

3. BASE FLOW

The bubbles were generated by two-dimensional direct numerical simulation of a boundary-layer flow on a flat plate.
The inflow velocity condition is a uniform flow and the bubble is generated by imposing a suction-blowing profile in the
upper boundary, analogous to that produced by the pressure gradient around the nose pressure peak in medium-thickness
airfoils. At the wall, a no-slip boundary condition is imposed. An isothermal wall condition is used for the temperature
and the density is calculated through the compatibility condition. A zero-vorticy gradient is imposed at the far-field
boundary, which together with the suction-blowing profile imposed to the wall-normal velocity produces a deceleration
of the free-stream velocity.

The simulations were performed using an in-house code (Bergamo et al., 2015). The code is implemented in Fortran
language and parallelized with the MPI protocol using domain decomposition strategies. The compressible Navier-Stokes
equations are spatially discretized using a compact finite differences scheme with spectral like resolution of 6th-order
accuracy, based on Lele (1992). The temporal integration was performed by the Runge-Kuttas method of fourth order. To
prevent aliasing-related problems the flow variables were filtered in the last pseudo time-step of the Runge-Kutta scheme
by a 10th-order low pass filter (Visbal and Gaitonde, 2002).

In the present paper, the bubbles were obtained after a computational convergence study of mesh and domain with
numeric residual of the ∼ 10−8 order. The peak reverse flow (urev/U∞) corresponding to each combination of Reynolds
and Mach numbers are presented in the Tab. 1, along with the streamwise coordinates of the separation (xsep) and
reattachment (xreat) points.

Table 1: The values intensity levels of the reverse flow of the 2D stationary bubble.
Re Ma=0.3 Ma=0.4 Ma=0.5 Ma=0.7

1700 9.74% 7.76% 6.45% 4.87%
2400 11.70% 9.64% 8.09% 6.22%
3100 13.70% 11.10% 9.5% 7.31%

Table 2: The separations and the reattachment points. The domain computational was (x, y) ∈ [0, 100]× [0, 3.5].
xsep xreat

Re Ma = 0.3 Ma = 0.5 Ma = 0.7 Ma = 0.3 Ma = 0.5 Ma = 0.7
1700 23.4125 32.7688
2400 21.7198 23.0749 23.4761 34.3206 33.0036 32.1189
3100 22.8001 23.3281 33.1759 32.2342

The increase of urev/U∞ is accompanied by a displacement of the separation and reattachment points. Therefore,
for a fixed Mach number, the size of the recirculation region and the peak reversed flow grow with increasing Reynolds
number. The computed separation bubbles are steady for reversed flow values up to 14%, which is in agreement with
similar computations found in the literature. Figure 3.shows the streamwise velocity field corresponding to the steady flow
for Re = 3100 and Ma = 0.5.

4. RESULTS

The stability of the compressible laminar separation bubble flows described in section 3 is studied in the scope of the
global stability analysis described in section 2. The linear stability eigenspectra was found to be dominated by a discrete
eigenmode for all the combinations of Reynolds and Mach number considered.

This eigenmode shares the same characteristics of the three-dimensional instability that dominates incompressible
separation bubbles (Theofilis et al., 2000; Rodrı́guez and Theofilis, 2010; Rodrı́guez et al., 2013). Figures 4.and 4.show the
temporal growth rate ωi as a function of the spanwise wavenumber β for different Reynolds numbers at Mach number 0.5
and 0.4, respectively. For each base flow with peak of reverse flow above 7%, the eigenmode is unstable for a bounded
range of β, attaining its maximum amplification for a finite value, consequently corresponding to a three-dimensional
perturbation.

Both the range of unstable wavenumbers and the maximum amplification is found to increase with higher Reynolds
numbers, which can be due to two main reasons. On one hand, the higher the Reynolds number, the larger the recircu-
lation region and the peak reversed flow, resulting in stronger bubbles, more prone to instability. On the other hand, for
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Figure 1: The velocity field of the base separation bubble corresponding to Ma=0.5 and Re=3100, with peak reversed flow
urev/U∞ = 9.5% .

centrifugal instabilities like the present one, viscosity has a stabilizing effect which is reduced with increasing values of
the Reynolds number.

The influence of Mach number maintaining fixed the Reynolds Number on this mode shows that the compressibility
has a stabilizing effect, as can be seen in Fig. 4.. However, for reverse flow peak level fixed around around 9%, the Mach
number has a different behavior, as can be seen in Fig. 4..

The eigenfunctions, illustrating the spatial structure of the modal perturbation, are highly localized in the vicinity of
the recirculation region, as shown in fig. 4..
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Figure 2: Temporal amplification rate ωi against spanwise wavenumber β for the steady three-dimensional global mode
at Ma = 0.5.

5. CONCLUSIONS

The combined influence of the Reynolds and Mach numbers on the linear instability of laminar separation bubbles
in the absent of environmental or externally introduced disturbances is studied here, thus extending the work done in
Rodrı́guez et al. (2013) to compressible flow. A validated direct numerical simulation code is used to compute a family
of model separation bubbles on a flat-plate boundary layer with different Reynolds and Mach numbers. Steady two-
dimensional flows with peak reversed up to 16% were computed in this manner, thus bounding the parametric region for
the onset of periodic vortex shedding. A modal stability analysis was performed for these steady flows, which showed the
dominance of a discrete three-dimensional eigenmode analogous to the one found for incompressible bubbles in previous
researches. Reynolds number has a clear destabilizing effect, partly due to the modifications on the base flow, partly due
to the reduced viscous damping of the centrifugal instability. The role of the Mach number is more involved, and requires
of further investigations in order to isolate its effect on the base flow (measured through the peak reversed flow) and on
the centrifugal instability eigenmode.
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Figure 3: Temporal amplification rate ωi against spanwise wavenumber β for the steady three-dimensional global mode
at Ma = 0.4.
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Figure 4: Temporal amplification rate ωi against spanwise wavenumber β for the steady three-dimensional global mode
at Re = 2400 for Ma = 0.5 and Ma = 0.4 .
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