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Abstract. Transition to turbulence in boundary layers flows over concave surfaces may occur due to the interaction

between Görtler vortices and other unsteady disturbances. In the nonlinear regime both the sinuous and varicose modes

are unstable modes and they lead the neutral Görtler flow to turbulence. The role of a external pressure gradient in the

growth of secondary modes is numerically investigated. We confirm both secondary modes are potentially unstable even

in the presence of a external pressure gradient different from zero. The sinuous mode is provided to be the most unstable

mode for the cases under consideration.
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1. INTRODUCTION

The weakly nature of the centrifugal instability in boundary layer flows over slightly concave surfaces justifies the

role of the secondary instability in the transition of a laminar flow to a turbulent state. In a region near saturation of

Görtler vortices, nonlinear effects are responsible for high distortions in the mean flow profile. These distortions are

experimentally visualized as the classical mushroom structure. This mushroom shape possesses inflectional points in the

streamwise velocity component that are potentially unstable to unsteady disturbances.

Experimental evidence of the secondary instability role in the transition of a Görtler flow is provided by Swearingen

and Blackwelder [1987]. The authors state the varicose and sinuous secondary modes are associated with high veloc-

ity gradients in the normal to the wall and spanwise directions, respectively [Saric, 1994]. Following Swearingen and

Blackwelder [1987], many theoretical and experimental studies have been focused on the secondary instability field as

in Hall and Horseman [1991], Li and Malik [1995] and Schrader et al. [2011]. Hall and Horseman [1991] supports the

importance given to the experimentally observed harmonic modes and Li and Malik [1995] identify contributions from

subhamonics modes in the transition. Li and Malik [1995] also confirms the existence of a relation between the character-

istic wavelength and the selection of the dominant mode. The sinuous and subharmonic modes tend to be more unstable

than the varicose mode in cases where the wavelength of the vortices is small.

Recently, experimental visualizations of Görtler vortices are provided by Winoto et al. [2005], Mitsudharmadi et al.

[2005], Mitsudharmadi et al. [2006], Tandiono et al. [2009b] and Tandiono et al. [2009a]. Winoto et al. [2005] reports

success in generating Gortler vortices by wavelengh imposition and in visualizing the growth of the secondary instability

modes. At the same year, the authors discusses nonlinear effects in the process that leave vortices to split and merge. Mit-

sudharmadi et al. [2006] reaffirms vortices with characteristic wavenumber parameter equals to 250 as the most unstable

ones. Tandiono et al. [2009b] highlights the secondary instability as the responsible to the observable increasing on shear

stress values in comparison with data obtained in turbulent regimes.

Studies related to the pressure gradient influence on the secondary instability are only discussed based on experimental

evidence and they are reported by Aihara and Sonoda [1981] and Bahri et al. [1999]. Based on this fact, mechanisms of

the secondary instability on the transition of a Görtler flow are here investigated by the use of high-order numerical

simulations. The aim of the present study is to confirm both the sinuous and varicose modes as potentially unstable in a

Görtler flow subjected to a external constant pressure gradient.

2. PROBLEM FORMULATION

Stability analyses are done considering a mean-flow state represented by a two-dimensional boundary layer flow over

a slightly concave surface. Assuming a flow quantity g̃ represented by

g̃ = gb + g, (1)

where gb is the mean-flow state, the following dimensionless transport equations in the streamwise (x), wall-normal (y)
and spanwise (z) directions can be used to represent the disturbances of the flow [Souza et al., 2004, Malatesta et al.,

2013]:
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The ωx, ωy and ωz are the components of the vorticity vector. We define vorticity as the opposite of the velocity vector

(u, v, w)t. Variable t is the time and ∇2 =
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. Re and Go are the Reynolds and Görtler numbers,
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Functions a, b and c express nonlinear terms. The curvature influence is represented by d [Floryan and Saric, 1982].

These functions are

a = ωx(vb + v)− ωy(ub + u), (5)

b = ωzbu+ ωz(ub + u)− ωxw, (6)

c = ωyw − ωzbv − ωz(vb + v), (7)

d = 2ubu+ u2. (8)

Velocity and vorticity components are correlated by
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The continuity equation

∂u

∂x
+

∂v

∂y
+

∂w
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= 0, (12)

and convenient boundary conditions close the system for disturbances [Souza et al., 2004, Malatesta et al., 2013].

2.1 The baseflow

The two-dimensional transport equation
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the continuity equation
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and the Poisson equation
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are considered to represent the boundary layer mean flow.

Our baseflow solution should represent boundary layer flows with pressure gradient distribution different from the

neutral case. In this sense we assume the potential flow is represented by

Ue = xm, (16)

where m is a local constant associated with the Hartree parameter (γ) by γ = 2m
m+1

.

The potential flow velocity and the pressure gradient may be related by the Bernoulli equation

Ue

dUe

dx
+

dp

dx
= 0, (17)

considering Ue(x = 1) = 1.
Baseflow boundary conditions are considered in accordance with Kloker et al. [1993].
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3. NUMERICAL METHOD

The geometry of our numerical domain is sketched in Fig. 1. The inflow boundary is represented by x = x0. Flow

exits at x = xmax.
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Figure 1. Sketch of our numerical domain. Buffer zones are inserted near inflow and outflow boundaries. A disturbance

strip is also shown.

Buffer zones are artificially inserted between points x1 and x2 and between x5 and x6. These buffer zones are applied

in accordance with Kloker et al. [1993]. Disturbances are generated via blowing and suction of mass at the wall in the

region between points x3 and x4. The steady disturbance amplitude A is here considered to be a real number.

Due to the spanwise quasi-periodic characteristic of the Görtler vortices [Ito, 1980] we can represent the flow quantity

g = {u, v, w, ωx,ωy,ωz, a, b, c, d} as a linear combination of K + 1 Fourier modes

g(x, y, z, t) =

K∑

k=0

gk(x, y, t)e
−ιkβz, (18)

where ι is the imaginary unit. Here β represents the spanwise wavenumber

β =
2π

λ
, (19)

and λ is the dimensionless wavelength of a pair of vortices.

Equations (2) - (12) are expressed for each Fourier mode k, as
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All disturbance calculations are done in the Fourier space but nonlinear products. The streamwise and normal to

the wall derivatives are approximated by compact finite difference schemes [Souza et al., 2005]. Spanwise derivatives are

calculated straightforward. For a k Fourier mode, Eqs. (20)-(22) are solved by the use of a 4th order Runge-Kutta method.
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At each substep of the temporal integrator: (a) the system of linear equations obtained through the discretization of Eq.

(24) is solved by a geometric multigrid method [Rogenski et al., 2015]. (b) streamwise and spanwise components of the

disturbance velocity are calculated by solving the 1D Poisson equations (Eqs. (23) and (25)). (c) vorticity components

are updated in the wall. In the last substep of the Runge-Kutta method, vorticity components are filtered by the use of a

compact tridiagonal filter [Lele, 1992]. A stationary state is assumed to be reached when the maximum difference between

the k = 1 spanwise vorticity component is smaller than a given small parameter.

The mean flow state is assumed to be a quasi-2D solution of the Navier-Stokes system of equations. Flow variables

are calculated in the physical space. Calculations follow a simplified version of the described disturbance algorithm.

3.1 The boundary conditions

Due to the use of buffer zones close to inflow and outflow boundaries, disturbance values of vorticity and velocity

may be consider to be equal to zero. Periodicity is assumed in the spanwise direction. The no-slip and impermeability

conditions are assumed for the velocity vector at the rigid boundary but disturbance strip.

At the disturbance generator the v1 velocity component is imposed to have a sin3 shape. Vorticity components at the

wall are calculated by the use of the expressions

∂2ωxk

∂x2
− k2β2ωxk

= −∂2ωyk

∂x∂y
− β∇2

kvk, (27)

ωyk
= 0, (28)

∂ωzk
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= ιkβωxk

−∇2
kvk. (29)

Our numerical domain is chosen to be high enough to ensure vorticity components are equal zero. At the upper boundary

the continuity equation is assured and ∂vk
∂y

= 0.

The no-slip and impermeability conditions are also assumed for the baseflow calculations. The vorticity component is

calculated considering the two-dimensional

∂ωzb

∂x
= −∇2vb. (30)

At the inflow boundary velocity and vorticity components of the baseflow are assumed to be equal to a Falkner-Skan

similar solution. At the upper boundary the meanflow is assumed to be non-rotational. The ub velocity component is

assumed to be represented by a power of the the streamwise position x (see Eq. 16). At the outflow, second derivative of

the quantities in the streamwise direction are considered to be zero.

3.2 Secondary instability generation due to unsteady disturbances

Unsteady disturbances are inserted via the same blowing and suction technique that generates the Görtler vortices.

The wave package is here defined as the sum of a fundamental frequency (ωt) sine function and its higher harmonics and

it is represented by

v1(x, 0, t) = As q(x)
M∑

m=1

sin

(
mωtt

2π

)
, (31)

where q(x) is a 8o polynomial function with maximum equals one and extrema equal zero and M denotes the maximum

number of harmonics. The constant As is a complex number that selects the preferable secondary instability mechanism

[Souza, 2003]. Here, if As is a real number the flow may transition via the amplification of the varicose mode. A sketch

of this configuration is illustrated by Fig. 2(a). Otherwise, if As is a purely imaginary number the flow may transition due

to the growth of the sinuous mode (see Fig. 2(b)).

4. RESULTS

Nonlinear simulations are carried out considering the same physical parameters of the classical experiments of Swearin-

gen and Blackwelder [1987]. We consider the radius of the concave surface R∗ = 3.2m. For all simulations the external

velocity is U∗

∞
= 5.0m.s−1 in L∗ = 0.1m. Kinematic viscosity is ν∗ = 1.5× 10−5 m2.s−1.

The Reynolds and Görtler numbers are defined in a streamwise position L∗. We assume

Re =
U∗

∞
L∗

ν∗
and Go = Re

1

4

√
L∗

R∗
. (32)

The spanwise wavelength of the vortices is defined in terms of the characteristic wavelength parameter

Λ =
U∗

∞
λ∗

ν∗

√
λ∗

R∗
. (33)
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Figure 2. Diagram of unsteady disturbances generation in a primary instability flow. Extrated from Souza [2011]
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The Λ = 450 describes the characteristic size of the vortices. For this case, three different external pressure gradient

configurations are investigated: a favourable case dp/dx = −0.02, an adverse case dp/dx = 0.008 and the neutral case

dp/dx = 0.0. The external streamwise velocity Ue and shape factor H12 for the three cases are presented by Fig. 3.

Figure 3. Baseflow characteristics for three different external pressure distributions.

(a) external streamwise velocity Ue (b) shape factor H12

Different sets of numerical parameters have been tests and the following results are considered to be grid-independent.

The numerical code and model have been verified and validated through Linear Stability Theory, numerical, and experi-

mental literature results.

Simulations adopt 21 Fourier modes with 64 collocated points in the physical space. For each Fourier mode a 2D
y-stretched mesh is generated. We consider 2201 points in the x-direction with step size dx = 5.0 × 10−3. In the

y-direction 225 points with first step size dy = 8.0 × 10−2 and stretching factor sf = 1% are used. The time step

is 2.5 × 10−3. Buffer zones and the disturbance region are defined close to the boundaries as [x0; x1; . . . ; xmax] =
[1; 1; 1.28; 1.48; 1.88; 11; 11.75; 12]. Three different wave packages are inserted in a region near the primary flow

saturation region. Each package has a streamwise length of 0.25, ωt = 20 Hz as the fundamental frequency and fifth-

teen harmonics. The temporal Fourier analysis follows metrics provided by Wassermann and Kloker [2002]. Here it is

considered 64 samples in a period for the Fourier analysis.

Initially we are going to describe the evolution of the sinuous and varicose modes for the neutral pressure gradient

configuration. Following Souza [2011], the sinuous mode is obtained by taking As = 0+ 1.5× 10−2 ι. In the same way,

the in phase case considers As = 1.5×10−2+0 ι. For both cases, the wave packages are inserted in positions [5.4, 5.65],
[5.9, 6.15] and [6.4, 6.65]. In Fig. 4(a) the maximum amplitude of each frequency m = 1, ..., 16 is presented for the

sinuous case. In phase results are presented in Fig. 4(b). Following Wassermann and Kloker [2002] the temporal Fourier

analyses consider both the streamwise velocity and the second derivative of the streamwise velocity. The interruption

presented in both figures presents changes in the analyzed function. In the left we analyze the temporal evolution of the

second derivative of u. In the right, the temporal analysis considers the u velocity.

Based on Fig. 4 one may observe that there are interactions between the temporal disturbance packages and the



Proceedings of EPTT 2016
Copyright c© 2016 ABCM

10th ABCM Spring School on Transition and Turbulence
September 19th to 23rd, São José dos Campos – SP, Brazil

Figure 4. Evolution of unsteady disturbances on the Görtler flow with dp/dx = 0.0. In (a) unsteady disturbances are out

of phase and in (b) unsteady disturbances are in phase with the primary flow.

(a) (b)

primary flow for both cases. In the region close to the unsteady disturbance strips, a low frequency mode grows slower

than a high frequency one. It implies that the flow transition from a primary state to a secondary state is likely to occur

through the amplification of higher frequencies. High frequencies grow closer to the leading edge for the sinuous mode.

They start to grow exponentially at x ≥ 6.5 in (a) and x ≥ 7.5 in (b). In this way one may assume the sinuous mode is

more unstable than the varicose one at least for the present configuration.

The influence of a favourable pressure gradient regime is investigated and the temporal Fourier analysis for the sinuous

and varicose modes is presented in Fig. 5. For the favourable case (dp/dx = −0.02), the wave packages are inserted in

positions [5.95, 6.2], [6.45, 6.7] and [6.95, 7.2]. In Fig. 6 the evolution of the Fourier modes represents the behaviour of

the secondary instability for the adverse regime (dp/dx = 0.008) .

A similar behaviour can be observed in Fig. 5 for the favourable cases. The sinuous mode shows to be more unstable

than the varicose one. Exponential growth is observed in x ≥ 7 for the (a) case and x ≥ 8 for the (b) case.

The adverse pressure gradient case shows to be the most unstable case. The exponential growth of the sinuous mode

occurs in x ≥ 6 and in x ≥ 6.5 for the varicose mode.

It is also important to identify which mode would dominate the transition in the case of competition between the

sinuous and varicose modes. Based on earlier results, it is reasonable to predict that the sinuous mode dominates the

transition. Aimed to verify this state, the competition between both secondary modes is imposed by considering As =
0.75

√
2 × 10−2(1.0 + 1.0 ι). In Fig. 7 the temporal analysis for the adverse, neutral and favourable cases are presented

in (a), (b) and (c), respectively.

Fig. 7 reaffirms the adverse case as the most unstable one. The sinuous behaviour of the instability can be visualized

by the use of Q-criterion with Q = 0.5 and is illustrated by Fig. 8 for the three cases.

The evolution of the temporal modes are similar to the purely sinuous cases provided by Figs. 4-6.

5. CONCLUSIONS

Both the sinuous and varicose modes are considered to be potentially responsible for transition in boundary layers

over concave surfaces for cases where the pressure gradient is different from zero. We observe that the favourable and

neutral pressure gradient cases are more stable than the adverse one. For all the cases described here the sinuous mode

shows to be the most unstable mode.



Proceedings of EPTT 2016
Copyright c© 2016 ABCM

10th ABCM Spring School on Transition and Turbulence
September 19th to 23rd, São José dos Campos – SP, Brazil

Figure 5. Evolution of unsteady disturbances on the Görtler flow with dp/dx = −0.02. In (a) unsteady disturbances are

out of phase and in (b) unsteady disturbances are in phase with the primary flow.

(a) (b)

Figure 6. Evolution of unsteady disturbances on the Görtler flow with dp/dx = 0.008. In (a) unsteady disturbances are

out of phase and in (b) unsteady disturbances are in phase with the primary flow.

(a) (b)
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Figure 7. Competition between the even and odd modes in cases where (a) dp/dx = 0.008, (b) dp/dx = 0.0 e (c)

dp/dx = −0.02

(a) (b) (c)

Figure 8. Visualization of vortical secondary structures by the use of Q-criterion in cases where both sinuous and varicose

modes compete. In (a) dp/dx = 0.008, (b) dp/dx = 0.0 and (c) dp/dx = −0.02.

(a) (b) (c)
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