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Abstract. This work presents a global model to determine the time dependent thermal efficiency in a GTAW process. 

With the purpose of estimating the amount of heat delivered by the GTAW torch, a previously developed homemade 

C++ code was improved. The new model proposes the heat flux estimation through the Golden Section optimization 

with Temperature Moving Sensor technique. An innovative methodology based on Time Traveling concept is proposed 

to regularize the Golden Section technique. In order to test the capacity of the model to adapt to a range of conditions, 

a set of lab-controlled experiments were performed under different welding conditions based on a Robust Project 

matrix (Taguchi). The objective function was determined based on to the fourth power between the experimental and 

the calculated values. Moreover, the work also presents an analysis of the cooling rate of the process by convection 

and radiation. An empirical correlation based on the local Nusselt number for flat plates was used to estimate the local 

heat transfer coefficient. The proposed model proved to be a first-class method to determine the thermal efficiency in a 

welding process. 
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1. INTRODUCTION 

 

An easy way to determine the melting efficiency represents a big challenge in all kinds of welding processes. A 

welding thermal model might allow the precise determination of the welding efficiency and the optimum welding 

parameters configuration without the need for experimental validation. This configuration may improve significantly 

the process and reduce costs. The optimum thermal process configuration may be determined by a statistical approach 

(Koleva, 2005). Although the statistical method can determine the best configuration for a random welding process, it 

cannot present the heat delivered to the welded plate numerically. Consequently, the welding efficiency cannot be 

determined.  

The thermal models usually have a heat input equation with an efficiency term. We can find several references about 

the use of an efficiency term on the heat distribution equation; however this value is not frequently presented, for 

example, Wahab et al. (1998). Other authors only use tabulated literature values as Piekarska and Kubiak (2011), where 

they assume the laser-arc hybrid welding process efficiency as 75%, or Sudheesh and Prasad (2015) who applied an 

efficiency of 70% for a TIG welding process. The empirical character of the thermal efficiency determination limits the 

precision of those models. Consequently, the results achieved by these authors may be doubtful. As a matter of fact, the 

welding efficiency does not depend just on the welding process itself, but it depends on the welded material, electric 

current, voltage, pointing angle, distance between the electrode and the plate, among others.   

One method to directly measure the process efficiency is by using a calorimeter (Nasiri et al., 2014). However, due 

to the price of the equipment, this method is usually put aside. Another way is by using numerical models. Rosenthal 

(1946) first presented a model for the heat input estimation of a welding process. Although this model is still largely 

used today for instance, Xia et al. (2008), Pham (2013) and Han et al. (2014), the welding energy is concentrated in 

only one point and this limits the calculation of the temperature in the region close to the fusion zone. Another 

weakness is the linearity presented in the model. Indeed, it assumes the material thermal properties as constant values 

(Goldak, 2005). Due to the presented limitations of the Rosenthal model, it should not be used for efficiency analysis. 

An efficient methodology to determine the heat input of the model is inverse analysis. The use of inverse problems 

allows the precise determination of the heat input with optimization techniques. In those analyses, the numerical 

temperature is minimized through an objective function until it reaches the measured temperature.  For instance, in 

order to estimate the average heat input in the Tungsten Inert Gas (TIG) welding process, Gonçalves et al. (2010)  used 

the Golden Section technique to minimize an error square function based on the difference of theoretical and 

experimental temperature. However, in this case the authors could only estimate the average heat input due to the fact 

that their model was not linked to a regularization method. Yang et al. (2011) applied the conjugate gradient method 

and the discrepancy principle to determine the heat generation in a friction welding process. Magalhães et al. (2015) 

developed an inverse code based on the Broydon-Fletcher-Goldfarb-Shanno (BFGS) optimization technique to estimate 

the heat input in a Gas Tungsten Arc (GTA) welding process in aluminum. 



Proceedings of ENCIT 2016           16th Brazilian Congress of Thermal Sciences and Engineering 
Copyright © 2012 by ABCM                   November, 07-10th, 2016, Vitória, ES, Brazil 

This work proposes a new methodology to determine the temporal efficiency curve of a GTA welding process. 

Thereunto, the Golden Section minimization technique (Vanderplaats, 2005) was used as an inverse technique to 

minimize the heat input during the welding process. Furthermore, this work proposes a model based on the Time 

Traveling idea as a methodology for regularization of the Golden Section technique. As innovation, the Temperature 

Moving Sensor technique is proposed as a new methodology for the welding efficiency curve estimation. In addition, 

nine experiments were performed to verify the efficiency variation in accordance with the electrical current, shielding 

gas, arc length and the pointing angle in the GTAW process of AISI 304 stainless steel. 

 

2. METHODOLOGY 

 

A Finite Difference model based on the three-dimensional heat diffusion equation with moving heat source and the 

Enthalpy function was developed in an in-house C++ code. The direct problem applied in this model is based on the 

code developed by Magalhães et al. (2015). Details on the software theoretical development as well as the boundary 

conditions were reported in Magalhães et al. (2015). 

 

2.1 Time Traveling Methodology 

 

The heat flux estimation technique proposed in this work is based on the Time Traveling concept. Therefore, it 

consists of an initial guess which analyses a hypothetical timeline. Then, it compares the parameter to be minimized in a 

future time. If the analyzed timeline does not suit the optimum condition, the method goes back to the present time and 

changes the guess. In all kinds of experimental measurements there are a response time between excitation and measure. 

This methodology allows minimize this response time in order to maximize the estimation. Therefore, this configuration 

reduces the number of required future time steps in the conventional regularization techniques. Figure 1 presents the 

schematic representation of the Time Traveling methodology, where nft represents the number of future time steps, i is 

the counter for the Time Traveling methodology and j is the counter for the analyzed model. 
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Figure 1. Flowchart for the Time Traveling methodology. 

 

This methodology could be applied in a welding problem. A method for solution is presented in Magalhães et al. 

(2015). In the mentioned work, the numerical model based on the three-dimensional heat diffusion equation with 

mobile heat source is solved by the Finite Difference method. The thermal properties are assumed as temperature 

dependent. Therefore, the only variable to be analysed is the heat flux. The optimization technique will require an initial 

guess for the heat flux. From this guess, the heat flux will be considered as a constant value in the interval 1 and ntf 

(number of future time steps). The objective function will then be compared at time step j+ntf. If the guess is not the 

optimum value, the optimization technique will redefine the heat flux guess and restart the model from time j – 1. The 

interactive procedure will remain until the sensitivity criterion is satisfied. 
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2.2 Objective Function 

 

In order to estimate the heat input, in this work, the Golden Section Technique was applied. This estimation 

technique requires an objective function. Due to the characteristic high thermal gradient of the process, the objective 

function based on the temperature difference to the fourth power was used.  The objective function adopted in this work 

is defined by: 
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where 
objF is the objective function, ntfj

eT  and ntfj

nT  are the experimental and numerical temperatures respectively at 

time step j + ntf, 
reg  is the regularization parameter, 

jq is the estimated heat flux and 
1jq  the last estimated heat input.  

 

 

2.3 Thermal Properties 

 

The thermal conductivity, diffusivity and emissivity were considered as temperature dependent. The thermal 

conductivity and diffusivity curves were built from fitting data presented in Touloukian et al. (1975). And the emissivity 

was taken from Roger et al. (1979). Equations (2-4) present the fitted curves for the thermal properties data from 

Touloukian et al. (1975) and Roger et al. (1979):  

 

   W/mK 1.731043.81080.11095.11052.7 22437411   TTTTT  (2) 

 

  69 1010.31041.1   TT [m/s2] (3) 

 

    22 1032.39ln1047.8   TT  (4) 

 

where λ is the thermal conductivity, α is the thermal diffusivity, ε the emissivity and T the local temperature.  

 

 

2.4 Temperature Moving Sensor  

 

In order to maximize the heat input estimation, this work also proposes heat flux estimation with a mobile 

temperature sensor. The proposed approach allows the determination of the torch efficiency curve during the welding 

process. Likewise, it allows the heat estimation on the maximum sensitivity point. Figure 2 presents the problem 

approach. In this work, the GTA torch applies boundary condition of heat flux q” (x, y, t) with velocity ux. The 

minimization point P also moves with an ux velocity towards the x. The joint use of Moving Sensor and Time Traveling 

methodology allows the torch efficiency curve determination for the welding process. 

q" (x, y, t)

GTA torch

ux

Maximum
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Figure 2. Moving Sensor scheme. 
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3. EXPERIMENTAL PROCEDURE 

 

Figure 3 presents the equipment apparatus used in the laboratory for the heat flux determination experiments of a 

GTA welding process. 200 × 50 × 4 mm stainless steel 304 plates were used. 10 type K thermocouples were welded by 

capacitive discharge opposite the surface where the heat flux was applied on the sample. The thermocouples were 

positioned 16.7 mm apart as displayed in Fig. 3. The large number of temperature sensors allows the linear 

approximation of the temperature peaks on the opposite surface of the heated plate. This approach is required due to the 

application of Temperature Moving Sensor method. An HP75000 series B was connected to a computer for the data 

acquisition of the temperature history on the plate. A coordinate table was used for the automated process. 
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Figure 3. Experimental apparatus displacement. 
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Figure 4. Positions of the Thermocouples on the 304 stainless steel. 

 

Table 1 presents the tested experimental conditions. In addition, the pointing angle, the distance between the 

welding torch and the sample, current, shielding gas and weld bead width, were presented. The set of experiments were 

planned following the Taguchi statistical approach (Robust Project). The weld bead width was obtained for each 

experimental condition from image analyzer.  
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Table 1. Experimental conditions tested 

Test 
Pointing angle 

(± 1°) 

La [mm] 

(± 0,1 mm) 

Current [A] 

(± 0,1 A) 
Shielding Gas 

Weld Bead 

width[mm] 

(± 0,1 mm) 

A01 30º 2 40 Ar 2 

A02 30º 3 70 Ar+25%He 3 

A03 30º 4 100 Ar+25%He 4 

A04 60º 2 70 Ar+25%He 3 

A05 60º 3 100 Ar 4 

A06 60º 4 40 Ar+25%He 2 

A07 90º 2 100 Ar+25%He 4 

A08 90º 3 40 Ar+25%He 2 

A09 90º 4 70 Ar 3 

 

4. NUMERICAL ANALYSIS 

 

Due to the high computational cost of simulation (at least 74 hours each simulation), only the results for case A02 

from Tab. 1 are presented. Figure 5 presents the measured temperature curves for test A02. Notice that for this 

experimental condition, the maximum measured temperature on the opposite surface of the heat is about 315°C.   

 

 
Figure 5. Experimental temperatures on the surface opposite the heated surface for test A02. 

 

The large number of temperature sensors allows the determination of an efficiency curve for the moving sensor 

which is represented by the point P (Fig. 2). Figure 6a presents the temperature curve of sensor P (ux × t, t) used for the 

heat flux estimation. Therefore, for each point of the curve on the Fig. 6a, P presents a different position in relation to x. 

Notice that although the temperature is about 300° C, the temperature in the heated region is not well established. This 

oscillation may be associated to some causes: the welding velocity could be irregular, the welded material is not 

homogeneous or the thermocouples are not adequately fixed. The experiments were conducted on an automated 

coordinate table which minimizes the welding speed oscillations. To precisely determine how homogenous the material 

is a microstructural analysis is required. However, this factor has a low impact on the temperature distribution. The 

most probable cause of the non-uniformity of the temperature on the heated region is the thermocouple attachment. For 

this evaluation, more experiments for each condition are required.  

The non-uniformity of the temperature curve on the heated region implies on similar oscillations on the heat 

estimation of the welding process. The heating rate of the plate in relation to time in test A02 (Tab. 1) is presented in 

Fig. 6b. Notice that there is no noise of the estimated heat rate in the output data on the heating region. In the mentioned 

case, the simulation took only three time steps of the method Time Traveling.   
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a) b) 

Figure 6. a) Temperature in the moving sensor P region and b) Estimated heat rate for case A02. 

 

The welding torch thermal efficiency is obtained by dividing the heating rate estimated values by the power supply. 

Figure 7 presents the welding efficiency for test A02. The thermal efficiency of the welding is defined as the percentage 

of generated heat effectively delivered to the welded plate. Notice that the thermal efficiency of the torch in relation to 

time tends to decrease as time increases. This may be explained: During the welding process heat diffusion occurs 

continuously on the sample. This energy storage leads to the increase in temperature in the points which are going to be 

welded as the torch moves. As these points have a higher energy level, they tend to reflect more heat than was imposed. 

Therefore, there is a decrease in the thermal efficiency of the welding as the plate becomes hotter. 

 

 
Figure 7. Thermal efficiency curve of the GTA welding process for test A02. 

 

As presented by Magalhães et al. (2015), the developed computational code also accurately predicts the numerical 

temperatures. A comparison between the experimental temperature values for thermocouple T1 (Fig. 5) and the obtained 

values on the software is displayed on Fig. 8. A good agreement between the curves may be observed. However, the 

temperature peak tends to be a little lower when compared to the experimental temperature. This difference is correlated 

to the inherent error of the attributed values of the thermal properties. For a higher precision of the calculated data at 

high temperatures, an estimation of the thermal conductivity and diffusivity for the stainless steel AISI 304 is required, 

mainly on the liquid phase. Unfortunately, there is a lack of technology development on this area. Therefore, those 

values are not easily found in literature. 
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Figure 8. Numerical and experimental temperatures for test A02. 

 

Figure 9 presents the temperature field obtained for the experimental test A02 (Tab.1) for time instant t=19s. The 

temperature field differs from the case presented by Magalhães et al. (2015), in which the authors obtained circular 

isothermals due to the high conductivity of the aluminum. For the AISI 304 stainless steel, the isothermals presented 

oval shape layout. This fact is intrinsically connected to a lower thermal conductivity value of stainless steel when 

compared to the aluminum. With a lower thermal conductivity, the heat tends to be stored in the welding region which 

reduces the cooling process.  

 
Figure 9. Temperature field in [K] of the GTA welding process for case A02 at t = 19s. 

 

5. CONCLUSIONS 

 

This work presents a low cost and accessible model to determine the thermal efficiency of a welding process. The 

couple between the proposed model of Time Traveling and the Temperature Moving Sensor technique proved to be a 

high class method to determine the efficiency of the GTA welding process. The same methodology may be applied to 

the heat flux estimation in other welding processes. The application of the Golden Section minimization technique 

allowed the heat flux estimation on the sample. Through the estimated heat flux, the welding efficiency could be 

determined. The similarity between the estimated and the measured temperatures validated the methodology. A 

proposition for future work in this area is the application of the developed model for the estimation of the welding 

efficiency in other manufacturing process, for instance the cutting process. 

Tnum 

Texp 
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