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Abstract: Halbach cylinders have been used in recent state-of-the-art magnetic refrigerators as the source of magnetic
fields. This paper presents the analytical modeling and solution of the magnetic field generated in the magnetic gap
between two concentric infinite Halbach cylinders, adapted from the previous works from the literature. The proposed
magnetic circuit shows two magnetic poles and will be optimized to improve its performance. The two Halbach cylinders
are assumed to be built using Nd-Fe-B permanent magnets. Calculations were made varying the radii of both magnets to
understand their effect, while focusing on the influence of the air gap height.
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der

1. INTRODUCTION

Magnetic refrigeration has been proposed as an alternative to vapor-compression technology because, among other
reasons, it does not require greenhouse refrigerants and has a potentially lower degree of thermodynamic irreversibilities.
The magnetic refrigeration technology operates with solid refrigerants called magnetocaloric materials (MCM), which
have their temperatures changed due to magnetization, a phenomenon known as the magnetocaloric effect (MCE). A
working fluid transports the energy released or absorbed due to the MCE to external heat exchangers. Lozano (2015)
enumerated the five main components of a magnetic refrigerator as such:

1. Magnetic circuit;

2. Active magnetic regenerator (AMR), where the MCM is placed;

3. Flow management system (for the working fluid);

4. Drive system;

5. Cabinet and heat exchangers.

The first component, responsible for the magnetic field variations that promote the MCE, is normally the most expen-
sive part of a magnetic refrigerator (Bjørk, 2010), making it a crucial design point. For room-temperature applications,
only permanent magnets are a viable solution for generating magnetic fields (Bjørk, 2010). Kitanovski et al. (2015) re-
viewed state-of-the-art prototypes and stated that the concept of a Halbach cylinder (Halbach, 1980) rotating around a
configuration of active magnetic regenerator (AMR) beds is one the best design solutions for magnetic refrigerators. A
similar configuration, where the magnets were stationary and the AMR ring rotated in the magnetic gap between them,
was studied by Bjørk (2010). The author proposed analytical solutions to the magnetic field for the case of a single
Halbach cylinder, and optimized numerically a configuration of two nested cylinders with four magnetic poles, without
providing analytical solutions. This design, able to generate average magnetic flux densities of 0.08 T and 0.9 T over the
low and high field regions of the magnetic gap, respectively, was used in the prototype published by Engelbrecht et al.
(2012), which achieved viable operating points (cooling capacity of 100 W and temperature span of 21 K) but with low
performance (a COP of 1.8 was calculated at 400 W and 8.9 K).

This paper extends the analytical solutions of the magnetic fields to the case of two nested Halbach cylinders with two
magnetic poles. Using fewer poles tends to reduce cooling power (because the magnetocaloric material experiences less
magnetic field variations during one AMR cycle), but also reduces torque and the required mechanical power and makes
the magnet easier to manufacture. The reduction in cooling capacity can be compensated by optimization of the magnetic
gap height, and it is shown that analytical solutions allow identifying the critical points of optimization.

2. MATHEMATICAL MODEL

2.1 Governing equations and constitutive relation

The geometry for the present analytical model is shown in Fig. 1. The Halbach cylinders (regions II and IV) are
supposed to be infinite, making the problem two-dimensional. Region I represents a shaft that is part of the drive system;



region III is the magnetic gap, where AMR beds are placed; region V is the environment outside the magnetic circuit;
and region VI is a hypothetical region with infinite magnetic permeability to give mathematical closure — final solutions
assume Re →∞.

Figure 1: Geometry for the mathematical model. I: shaft; II, IV: Halbach magnets; III: magnetic gap; V: external environ-
ment; VI: hypothetical region with infinite magnetic permeability.

The model is assumed magnetostatic because of the low frequencies common in magnetic refrigeration. With this
assumption and the absence of conduction currents (due to the use of permanent magnets as field sources), the governing
equations for each region k are the following two Maxwell equations:

∇×Hk = 0 (1)

∇ ·Bk = 0 (2)

where H is the magnetic field and B is the magnetic flux density field. The constitutive relation is:

Bk = µ0µr,kHk + Brem,k (3)

where µ0 is the magnetic permeability of vacuum (µ0 = 4π × 10−7 N/A2), µr,k is the permeability of region k relative
to µ0 and Brem,k is the magnetic remanence. For infinite and ideal Halbach magnets (Bjørk, 2010):

Brem,k (r, φ) = Brem,k (cos(pkφ) êr + sin(pkφ) êφ) (4)

The unit vector in a direction α is denoted êα. The parameter pk controls the number of poles generated by a Halbach
cylinder. This work assumes pII = −1 and pIV = 1, which results in two magnetic poles over region III.

Boundary conditions for magnetostatic problems are the continuity of tangential components of H and normal compo-
nents of B across interfaces (Bastos and Sadowski, 2014). In addition, as is common in cylindrical coordinate problems,
singularities (infinite fields) must be avoided at r = 0, and, because of Eq. (3), HVI = 0.

2.2 Solution to the magnetic fields

The solution is given in terms of the magnetic vector potential Ak:

Bk = ∇×Ak (5)

The complete solutions for a single Halbach cylinder can be found in Bjørk (2010). It can be shown that this solution
is valid for the present case with two cylinders, and the solution coefficients can be found by application of boundary
conditions. With expressions for Ak, the magnetic flux density can be calculated using Eq. (5), and the magnetic field
employing Eq. (3).

Notice that, when this model is applied to the case where region III is not occupied by magnetocaloric material, the
magnetic field HIII is equivalent to the applied magnetic field over the MCM. In general, the effective magnetic field over
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a point is the resultant of the applied field (generated by field sources such as the permanent magnets) Ha and a reaction
demagnetizing field Hd:

H = Ha + Hd (6)

If region III is assumed filled with air (which cannot be demagnetized), then, the following relations are valid:

HIII = Ha,III (7)

BIII = µ0Ha,III (8)

The right-hand side of Eq. (8) is what appear in energy relations for permanent magnets and therefore results will be
presented in terms of BIII. The solution to the magnetic flux density in the air gap is of the form:

BIII (r, φ) =

((
a1,III +

b1,III
r2

)
cosφ

)
êr +

((
−a1,III +

b1,III
r2

)
sinφ

)
êφ (9)

where a1,III and b1,III are functions of the radii, the relative permabilities and the magnetic remanence of the Halbach
cylinders.

Bjørk (2010) proposed two parameters to evaluate the quality of a magnetic circuit design. The first is the figure of
merit of magnetic circuits for magnetic refrigeration, the Λcool parameter, defined as:

Λcool =
(〈
B2/3

〉
h
−
〈
B2/3

〉
l

) Vh
Vmagnet

τ∗h (10)

where
〈
B2/3

〉
α

is the volumetric average of the magnitude of the magnetic flux density to the power of 2/3 over region α;
this “region” index can be either “h” (high) or “l” (low), and represents the maximum and mininum values of the applied
magnetic field that an AMR particle experiencies during a cycle. The second part of Eq. (10) is the ratio of Vh (the volume
of the high field region) to Vmagnet (magnet volume). The parameter τ∗h is the fraction of the whole AMR cycle where
there is at least one bed in the high field area (that is, the fraction of the cycle where the magnet is being used). The use
of the power 2/3 is justified because the MCE scales with the applied field to that power, thus making Λcool proportional
to the temperarure variations. Overall, the higher Λcool for a magnetic refrigerator, the higher the MCE it generates, the
higher is the available MCM volume and the lower is the magnetic volume (which, as said before, represents usually the
largest part of the costs).

The second parameter is the energy product Ψ:

Ψ = ‖B · B̂rem‖ ‖H · B̂rem‖ (11)

where B̂rem is a unit vector in the direction of Brem. Permanent magnet regions that show low values of Ψ represent
wasted magnet mass that cannot transfer energy to the MCM.

3. RESULTS

Table 1 show the reference values for all parameters in the following results, taken from the magnetic circuit by
Lozano (2015). Eriksen et al. (2015) showed that a careful selection of the air gap height:

hgap = Rg −Ro (12)

can result in great performance improvements. Hence, the following results will be presented in terms of hgap, and Ro

can be calculated from Eq. (12) (taking other values from Tab. 1).
Figure 2 shows sample results for the case of hgap = 20 mm. In Fig. 2a, the magnetic flux density magnitude in the

air gap is shown; the average values over the low and high fields are respectively 0.40 T and 0.97 T. Fig 2b indicates
that the inner magnet shows poor energy usage (the maximum value of the energy density for the present configuration is
409.4 kJ/m3), probably because the outer magnet demagnetizes the inner one, indicating critical points of optimization.
This effect can be also be seen on Fig. 3, where the maximal values of air gap height represent degenerated inner magnets.
Hence, there is an optimal size for the inner magnet that produces wide magnet field variations without wasted magnet
volume.
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Table 1: Values of the parameters kept constant in the case study of results for to the analytical solution
Parameter Value

Ri 25 mm
Rg 110 mm
Rs 150 mm
µr,I 1.00
µr,II 1.05
µr,III 1.00
µr,IV 1.05
µr,V 1.00
Brem,II 1.47 T
Brem,IV 1.47 T

(a) Magnetic flux density (arrows represent the
magnetic remanence)

(b) Energy density

Figure 2: Magnetic flux density and energy density for hgap = 20 mm (other parameters from Tab. 1).

Figure 3: Magnet characterization parameter for various values of hgap and different sizes of the external magnet (other
fixed parameters from Tab. 1).
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